Какими свойствами подземные воды

Какими свойствами подземные воды thumbnail

Подзе́мные во́ды — воды, находящиеся в толще горных пород верхней части земной коры в жидком, твёрдом и газообразном состоянии[1][2].

Классификация[править | править код]

По условиям залегания подземные воды подразделяются на несколько видов:

  • почвенные;
  • грунто́вые;
  • межпластовые;
  • артезианские;
  • минеральные.

Почвенные воды заполняют часть промежутков между частицами почвы; они могут быть свободными (гравитационными), перемещающимися под влиянием силы тяжести или связанными, удерживаемыми молекулярными силами.

Грунто́вые воды образуют водоносный горизонт на первом от поверхности водоупорном слое. В связи с неглубоким залеганием от поверхности уровень грунтовых вод испытывает значительные колебания по сезонам года: он то повышается после выпадения осадков или таяния снега, то понижается в засушливое время. В суровые зимы грунтовые воды могут промерзать. Эти воды в большей мере подвержены загрязнению.

Межпластовые воды — нижележащие водоносные горизонты, заключённые между двумя водоупорными слоями. В отличие от грунтовых, уровень межпластовых вод более постоянен и меньше изменяется во времени. Межпластовые воды более чистые, чем грунтовые. Напорные межпластовые воды полностью заполняют водоносный горизонт и находятся под давлением. Напором обладают все воды, заключенные в слоях, залегающих в вогнутых тектонических структурах.

По условиям движения в водоносных слоях, различают подземные воды, циркулирующие в рыхлых (песчаных, гравийных и галечниковых) слоях и в трещиноватых скальных породах.

В зависимости от залегания, характера пустот водовмещающих пород, подземные воды делятся на:

  • поровые — залегают и циркулируют в четвертичных отложениях: в песках, галечниках и других обломочных породах;
  • трещинные (жильные) — залегают и циркулируют в скальных породах (гранитах, песчаниках);
  • карстовые (трещинно-карстовые) — залегают и циркулируют в растворимых породах (известняках, доломитах, гипсах и других).

Запасы подземных вод[править | править код]

Подземные воды — часть водных ресурсов Земли; общие запасы подземных вод составляют свыше 60 млн км³[источник не указан 510 дней]. Подземные воды рассматриваются как полезное ископаемое.

Методы поиска подземных вод[править | править код]

  • геоморфологическая оценка местности,
  • геотермические исследования,
  • радонометрия,
  • бурение разведочных скважин,
  • изучение керна, извлечённого из скважин, в лабораторных условиях,
  • опытные откачки из скважин,
  • наземная разведочная геофизика (сейсморазведка и электроразведка) и каротаж скважин

См. также[править | править код]

  • Артезианские воды
  • Водоносный горизонт
  • Водозаборные сооружения
  • Грунтовая вода

Примечания[править | править код]

Литература[править | править код]

  • Подземные воды / А. А. Коноплянцев, Р. С. Штенгелов // Перу — Полуприцеп. — М. : Большая российская энциклопедия, 2014. — С. 547. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 26). — ISBN 978-5-85270-363-7.
  • Ланге O. K. Подземные воды СССР, ч. 1-2, М., 1959—1963;
  • Гидрогеология СССР. — М., 1971;
  • Савцова Т. М. Общее землеведение, М., 2005.
  • Почвенные воды // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Из БРЭ:

  • Коноплянцев A. A., Cе­ме­нов C. M. Изу­че­ние, про­гноз и кар­ти­ро­ва­ние ре­жи­ма под­зем­ных вод. M., 1979.
  • Клас­си­фикация экс­плуа­та­ци­он­ных за­па­сов и про­гноз­ных ре­сур­сов под­зем­ных вод. M., 1983.
  • Гольд­берг В. М., Газ­да С. Гид­ро­гео­ло­ги­че­ские ос­но­вы ох­ра­ны под­зем­ных вод от за­гряз­не­ния. М., 1984.
  • Бочевер Ф. М., Лапшин Н. Н., Орадовская А. Е. Защита под­зем­ных вод от за­гряз­не­ния. — М., Недра, 1979. — 254 c.

Ссылки[править | править код]

  • Учёт влияния грунтовых вод при проектировании фундаментов
  • Дренаж болотистой почвы

Источник

Характеристики подземной воды

Физические свойства

К физическим свойствам подземных вод относятся температура, цвет, прозрачность, вкус, запах и электрическая проводимость.

Температура подземных вод изменяется в широких пределах. Как правило, в платформенных областях она увеличивается с глубиной. В высокогорных районах и в области распространения многолетней мерзлоты температура подземных вод низкая; в последнем случае высокоминерализованные воды местами имеют даже отрицательную температуру (-5°С и ниже). В районах молодой вулканической деятельности, а также в местах выходов гейзеров (Камчатка, Исландия, Северная Америка и др.) температура воды иногда превышает 120°С. Температура неглубоко залегающих подземных вод в средних широтах обычно изменяется в пределах 5–12°С и обусловливается местными климатическими (в основном) и гидрогеологическими условиями.

Цвет подземных вод зависит от имеющихся в них механических и коллоидных примесей. Органические примеси придают воде желтоватый и буроватый цвет, а соединения оксида железа и сероводород — зеленовато-голубой. Обычно подземные воды бесцветны.

Прозрачность подземных вод также зависит от содержания в них механических примесей и органических веществ. Прозрачность определяют при помощи цилиндра, который ставят на специальный шрифт, после чего через кран выпускают воду из цилиндра до тех пор, пока через оставшийся слой воды не станет ясно читаться шрифт. Высота оставшегося столба воды в сантиметрах и определяет степень прозрачности. Подземные воды обычно не содержат взвешенных частиц и имеют прозрачность выше 30 см.

Вкус подземной воде придают растворенные минеральные вещества, газы и примеси. Хлористый натрий придает воде соленый вкус, сульфаты магния — горький, соли железа — терпкий, органические вещества — сладковатый, гидрокарбонаты кальция и магния, а также свободная углекислота — приятный, освежающий. Вкус определяется в воде, подогретой до 20–30°С. Следует иметь в виду, что вкусовые ощущения субъективны.

Запаха подземные воды обычно не имеют, однако иногда встречаются воды с запахом тухлых яиц (сероводород), «болотным», гнилостным, плесени и др. Питьевая вода не должна иметь запаха. Для точного определения запаха воду подогревают до 50–60°С.

Благодаря содержанию в воде растворенных веществ — катионов и анионов, называемых электролитами, — подземным водам присуща электрическая проводимость. Величина ее находится в сложной зависимости от концентрации растворенных веществ, их валентности и температуры. Величина электрической проводимости дает возможность судить об общей минерализации подземных вод.

Химический состав подземных вод

В природных водах обнаружено в растворенном виде свыше 80 элементов периодической системы Менделеева. Следовательно, подземные воды являются природными растворами. Наиболее широко распространены в природных водах Cl, S, С, Si, N, О, Н, К, Na, Mg, Са, Fe, Al, другие элементы встречаются реже и обычно в небольших количествах.

Читайте также:  Какое свойство нуклеиновых кислот обеспечивает передачу наследственной информации

Минеральные воды

Водные растворы земных недр — это динамическая система, которая содержит Н2О и некоторое количество газов в различных фазах и состояниях; состав системы постоянно изменяется. Так, при выщелачивании пресные атмосферные осадки или речные воды растворяют какой-либо элемент из минерала, при этом их минерализация повышается и меняется состав, причем в воду переходят наиболее растворимые соли — NaCl, Na2SO4 и др.

При внедрении пресных инфильтрирующихся вод в осадочные породы морского генезиса происходят вытеснение раствора и смешение с водами морского происхождения.

Определение химического состава подземных вод имеет большое значение. Требования к качеству подземных вод изменяются в зависимости от целей их использования (для водоснабжения, при строительстве, в горном деле, для орошения и др.).

Свойства подземных вод зависят от количества и соотношения содержащихся в них в растворенном виде солей, присутствующих в воде в виде ионов — катионов и анионов. Наибольшее практическое значение имеют катионы Н, К, Мg, Са, Fe, Мn и анионы ОН, Cl, SO4, HCO3. В молекулярном и коллоидном состоянии почти во всех водах содержатся органические вещества и коллоиды: SiO2*nH2O, Fe2O3*nH2O, Аl2О3*nН2O и др. В молекулярном виде в подземных водах содержатся газы СO2, СН4, O2, N2, H2S и др.

В состав природных вод входят почти все известные радиоактивные элементы. Практическое значение приобрели воды, содержащие уран, радий и радон, широко используемые в бальнеологии и для получения различных полезных ископаемых.

Реакция воды

Для правильного определения химического состава подземных вод нужно знать концентрацию водородных ионов, или так называемую активную реакцию воды, количественно выражаемую величиной pH, которая представляет собой десятичный логарифм концентрации ионов водорода (точнее, их активность), взятый с положительным знаком: pH = lgH. Знать эту величину необходимо для решения ряда теоретических и практических задач (оценка агрессивности подземных вод, их коррозирующей способности и др.). При температуре 22°С в чистой воде содержание водородных и гидроксильных ионов равно (порознь) 10^(-7), следовательно, для нейтральных вод pH = 7, при pH > 7 вода имеет щелочную реакцию, а при pH < 7 — кислую. По величине pH воды делятся на: 

  • весьма кислые (pH < 5), 
  • кислые 5 < pH < 7, 
  • нейтральные (pH = 7), 
  • щелочные (7 < рН < 9), 
  • высокощелочные (pH > 9).

Подземные воды обычно имеют слабощелочную реакцию. Воды сульфидных и особенно колчеданных и каменноугольных месторождений обычно кислые и весьма кислые.

Устанавливать концентрацию водородных ионов необходимо на месте отбора проб воды. Наиболее распространен колориметрический способ определения, основанный на свойстве индикаторов менять свою окраску в зависимости от концентрации водородных ионов.

В полевых условиях часто пользуются лакмусовой бумагой, которая при смачивании водой с нейтральной реакцией не меняет свой фиолетовый оттенок, в кислой воде приобретает красный цвет, в щелочной — синий. Можно пользоваться также метилоранжем. Одна-две капли его, добавленные к 50 см³ воды, придают воде при нейтральной реакции оранжево-красную окраску, при кислой — розовато-красную и при щелочной — желтую.

Бактериальный состав подземных вод 

Не только в поверхностных, но и в подземных водах, особенно в неглубоко залегающих грунтовых, имеющих сообщение с поверхностными, встречаются различные бактерии. Среди бактерий есть не опасные для здоровья человека и болезнетворные, являющиеся возбудителями дизентерии, брюшного тифа, холеры и других желудочных заболеваний. Показателем бактериальной загрязненности воды служит кишечная палочка коли. Сама по себе она безвредна, но ее присутствие указывает на наличие болезнетворных бактерий. Наличие в питьевой воде аммиака и азотной кислоты указывает на фекальную загрязненность, что совершенно недопустимо.

Минерализация подземных вод 

Для оценки качества воды проводят некоторое число полных химических анализов, состав которых зависит от назначения воды. В массовом количестве проводят сокращенные химические анализы с определением содержания трех анионов Cl, SO4, НСO3 и трех катионов Са, Mg и Na + К. При этом устанавливают физические свойства, количество свободной и агрессивной углекислоты, жесткость и общую минерализацию.

Химический состав воды выражается в ионной форме количеством того или иного иона в миллиграммах на литр воды, а также в миллиграмм-эквивалентной. Для перевода в миллиграмм-эквивалентную форму надо количество ионов каждого элемента (в мг/л) разделить на его эквивалентную массу (атомная масса элемента, деленная на его валентность). Так, 460 мг/л Na соответствует 460:23 = 20 молям Na, а 240 мг/л SO4 составляет 240:8 = 5 молей SO4.

По преобладающему аниону воды делятся на следующие основные классы: гидрокарбонатные, сульфатные, хлоридные и сложного состава. Каждый класс подразделяется по преобладающему катиону на подклассы: натриевые, кальциевые, магниевые или смешанные (натриево-кальциевыеи т. п.).

Общая минерализация воды выражается суммой содержащихся в ней химических элементов, их соединений и газов. Она оценивается по сухому, или плотному, остатку, который получается после выпаривания воды при температуре 105–110°С и выражается в миллиграммах или граммах на литр.

Соленая вода

По степени минерализации (в г/л) воды разделяются на: 

  • пресные < 1; 
  • слабосолоноватые 1–3; 
  • сильносолоноватые 3–10; 
  • соленые 10–35;
  • рассолы >35.

Жесткость воды — особое ее качество, обусловленное присутствием ионов Са и Mg. Жесткость подземных вод во многом определяет возможность их практического использования.

Жесткая вода плохо взмыливается, дает накипь на стенках паровых котлов (что уменьшает их теплопроводность, приводит к перерасходу топлива и может вызвать аварию) и посуды, вспенивается, в жесткой воде медленнее развариваются овощи, мясо, крупа и другие продукты.

Различают общую жесткость, обусловленную содержанием в воде всех солей кальция и магния: Са(НСO3)2, Mg(HCO3)2, CaSO4, MgSO4, СаСl2, MgCl2; карбонатную, или временную, обусловленную наличием в воде бикарбонатов (солей НСO3) кальция и магния, удаляемых при кипячении вследствие их разрушения и перехода в слаборастворимые карбонаты, выпадающие в осадок; некарбонатную, или постоянную, остающуюся в воде после удаления бикарбонатов и равную разности общей и карбонатной жесткости.

Согласно ГОСТ 2874–82 жесткость воды выражают в миллиграмм-эквивалентах Са и Mg на 1 л воды; 1 мг-экв/л соответствует содержанию 20,04 мг/л Са или 12,16 мг/л Mg.

Жесткость природных вод колеблется от нескольких до десятков миллиграмм-эквивалентов; в одном и том же источнике жесткость в разные времена года различная. При жесткости менее 3 мг-экв/л воду называют мягкой, при 3–6 мг-экв/л — умеренно жесткой, при 6–9 мг-экв/л — жесткой, а при более 9 мг-экв/л — очень жесткой.

Читайте также:  Каким свойством обладают противоположные грани параллелепипеда

Загрязненность воды органическими веществами

Наибольшая загрязненность органическими веществами наблюдается в грунтовых водах на участках, где с поверхности фильтруются воды, содержащие органические вещества растительного или животного происхождения: в заболоченных районах, на речных поймах, особенно в местах расположения животноводческих ферм, выгребных ям и т. п.

Предельно допустимые концентрации веществ в воде (ПДК)

ГОСТ 2874–82 определяет допустимые нормы для веществ, встречаемых в природной (поверхностной и подземной) воде, подаваемой потребителям в качестве питьевой. Содержание веществ, наиболее часто встречающихся в природных водах, добавляемых в процессе обработки, а также появляющихся в результате бытового, промышленного и сельскохозяйственного загрязнения, не должно превышать значений, установленных ГОСТ 2874–82,т. е. предельно допустимых концентраций (ПДК). Если в воде обнаружено несколько указанных в ГОСТе веществ, то сумма их концентраций, выраженная в долях от максимальных допустимых концентраций каждого вещества в отдельности, не должна превышать 1.

Биологическое потребление водой кислорода (БПК5) 

Наряду с предельно допустимыми значениями концентрации химических веществ и содержания бактерий коли необходимо учитывать наличие в воде кислорода. При определенном содержании О2 может происходить бактериальное самоочищение сточных вод, т. е. процесс распада органических веществ в сбрасываемых сточных водах. Правила охраны поверхностных вод от загрязнения сточными водами предусматривают, что в воде водотоков и водоемов растворенного кислорода должно быть не менее 4 мг/л. Полная биологическая потребность воды водоемов и водотоков в кислороде при температуре 20°С не должна превышать 3 мг/л (БПК5≤3) в местах забора из них воды для водоснабжения и 6 мг/л в местах купания.

Источник

Подземные воды Земли изучает наука Гидрогеология.

Подземные воды — это …

Подземные воды являются неотъемлемой частью Гидросферы Земли. Более детально про Гидросферу Земли читайте в нашей статье ГИДРОСФЕРА — ВОДНАЯ ОБОЛОЧКА ЗЕМЛИ →.

Как таковая наука о Подземных водах появилась 1674 году после публикации ученым П. Перро своей работы «Происхождение источников», а свое официальное название она получила после издания в 1802 году Ж. Лемарком книги «Гидрогеология, или Исследование влияния воды на поверхность земного шара».

Как утверждают ученые объем Подземных вод составляет 60 000 000 км3, или 3,83% от всего объема гидросферы. (источник Мировой водный баланс…, 1974; Гавриленко, Дерпгольц, 1971; и др.)

Для более точного понимания — что есть подземные воды как таковые, приведем несколько определений из авторитетных словарей и энциклопедий.

Горная энциклопедия

Подземные воды … — воды, находящиеся в толщах горных пород верхней части земной коры в жидком, твёрдом и парообразном состоянии. П. в. являются частью Водных ресурсов. B областях существования П. в. температура колеблется от -93 до 1200°C, давление — от нескольких до 3000 МПa …

A. A. Kоноплянцев.

Горная энциклопедия. М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984 — 1991

Экологический словарь

Подземные воды — воды, в том числе минеральные, находящиеся в подземных водных объектах ( Водный Кодекс Российской Федерации )

EdwART. Термины и определения по охране окружающей среды, природопользованию и экологической безопасности. Словарь. 2010

Словарь по географии

Вода, находящаяся ниже земной поверхности в толще горных пород и в почве в любых физических состояниях.

Словарь по географии. 2015

Подземные воды — происхождение, гипотезы и факты

Происхождение Подземных вод издавна будоражило воображение лучших умов человечества. Высказывались самые смелые предположения и гипотезы, и ради справедливости необходимо отметить, что многие из них оказались верными. Существует обоснованное предположение, что подземные воды использовались в засушливых районах Ближнего Востока, средней Азии и Китая уже в 3000-2000 г. г. до нашей эры. Первую, из дошедших до нас, гипотез о происхождении подземных вод  относят к VII веку до н. э. Она принадлежат древнегреческому философу Фалесу. Позднее, свое согласие с этой гипотезой выразил и Платон. Древнегреческие философы предполагали, что подземные воды происходили из охлажденного в подземных пещерах воздуха.

Подземные воды существуют в различных агрегатных состояниях. Они накапливаются в толщах земной коры и движутся там различными способами по пустотам, порам и трещинам. В местах присутствия водонепроницаемых пород они скапливаются, образуя сообщающиеся между собой подземные водохранилища — подземные водоносные системы, опоясывающие весь земной шар.

Подземные воды имеют самое разнообразное применение в хозяйственной деятельности человека. Во-первых это источник пресной воды, во-вторых подземные воды — источник многих важных для человека минералов, всем хорошо известны лечебные минеральные воды. Горячие или геотермальные воды, которые мы подробно рассмотрели в статье Термальные источники, или горячие воды Земли, являются не только источниками полезных минералов, но и дарят человеку доступную и бесплатную геотермальную энергию.

Подземные воды — виды и классификация

О. Мейнцер (1935) классифицировал воды находящиеся в горных породах таким образом:

  • Воды в свободном состоянии, способные к самостоятельным формам движения, различным, в зависимости от конкретного вида воды:
    * пар (парообразная);
    * гравитационные воды (просачивающаяся капельножидкая, подземные потоки);
    * в надкритическом состоянии — подземные воды с температурой и давлением выше критических.
  • Воды в связанном состоянии, не способные к самостоятельным формам движения, без перехода в свободное состояние (в другие виды воды):
    * вода, химически связанная с кристаллической структурой минералов;
    * вода, физико-химически и физически связанная с поверхностью минеральных частиц (скелета) горных пород;
    * вода переходного состояния от связанной к свободной, в том числе капиллярно-связанная;
    * иммобилизованная (вакуольная) вода;
    * вода в твердом состоянии.

По интенсивности водообмена подземные воды можно разделить на такие категории:

  • Зона активного водообмена – 300 / 500 метров от поверхности земли, время обновления вод от нескольких лет до нескольких десятков лет;
  • Зона замедленного водообмена – 500 / 2000 метров от поверхности земли, время обновления вод десятки и сотни лет;
  • Зона пассивного водообмена – более 2000 метров от поверхности, время обновления вод происходит на протяжении миллионов лет.
Читайте также:  Какое общее свойство имеют следующие тела земля мяч

Классификация подземных вод по степени минерализации:

  • Зона активного водообмена – 300 / 500 метров от поверхности земли, преобладают пресные воды с содержанием солей до 1 грамма/литр ;
  • Зона замедленного водообмена – 500 / 2000 метров от поверхности земли, солоноватые воды с содержанием солей от 1 до 35 г/л;
  • Зона пассивного водообмена – более 2000 метров от поверхности, соленые воды по степени солености близкие к морской воде более 35 г/л.

Классификация подз. вод в зависимости от вида пустот, которые они заполняют:

  • Поровыe подз. воды — в песках, галечниках … ;
  • Трещинныe подз. воды — в гранитах, песчаниках и других скальных породах;
  • Карстовыe подз. воды — воды находящиеся в растворимых породах (гипсах, известняках, доломитах … ).

Классификация подземных вод по температуре (Щербаков, 1979)

Важным фактором является температура Подземных вод. Этот вопрос рассматривался в статье «Термальные источники, или горячие воды Земли». Отметим интересный факт — на больших глубинах вода достигает состояния так называемой «водяной плазмы».  Это состояние характеризуется тем, что, с одной стороны, вода перестает быть «водой», а с другой и не стала водяным паром.  Происходит это, когда за счет высоких температур, скорость движения молекул сравнима со скоростью движения молекул водяного пара, а плотность остается как у воды в жидком состоянии. Такая пароводяная смесь часто выбрасывается на поверхность в виде так называемых Гейзеров.

Переохлажденные подземные воды

  • Степень нагретости: исключительно холодные.
  • Шкала температур: ниже 0 °С .
  • Физические и биохимические критерии температурных границ: переход в твердое состояние.

Холодные подземные воды — тип №1

  • Степень нагретости: весьма холодные.
  • Шкала температур: ниже 0-4 °С .
  • Физические и биохимические критерии температурных границ:  3,98°С — температура максимальной плотности воды.

Холодные подземные воды — тип №2

  • Степень нагретости: умеренно холодные.
  • Шкала температур: ниже 4-20 °С .
  • Физические и биохимические критерии температурных границ:  единица вязкости (сантипуаз) определена при температуре 20°С.

Термальные подземные воды — тип №1

  • Степень нагретости: тёплые.
  • Шкала температур: ниже 20-37 °С .
  • Физические и биохимические критерии температурных границ:  температура человеческого тела — около 37°С.

Термальные подземные воды — тип №2

  • Степень нагретости: горячие.
  • Шкала температур: ниже 37-50 °С .
  • Физические и биохимические критерии температурных границ: оптимальная температура для роста бактерий.

Термальные подземные воды — тип №3

  • Степень нагретости: весьма горячие.
  • Шкала температур: ниже 50-100 °С .
  • Физические и биохимические критерии температурных границ: переход в парообразное состояние.

Перегретые подземные воды — тип №1

  • Степень нагретости: умеренно перегретые.
  • Шкала температур: ниже 100-200 °С .
  • Физические и биохимические критерии температурных границ: термометаморфизм (гидролиз карбонатов с выделением С02 , генерация абиогенного H2S и др.).

Перегретые подземные воды — тип №2

  • Степень нагретости: весьма перегретые.
  • Шкала температур: ниже 200-372 °С .
  • Физические и биохимические критерии температурных границ:процессы углефикации органического вещества и формирования углеводородов.

Безнапорные воды:

  • Грунтовые воды и верховодка – это первые от поверхности земли водоносные горизонты или по другому водоносные слои, залегающие на первом водоупорном слое (в отличие от верховодки грунтовые воды обычно связаны с наличием регионально-распространенного пласта слабопроницаемых пород,  эти воды питают колодцы);
  • Межпластовые воды, водоносные системы – подземные водохранилища, часто сообщающиеся между собой, у которых водонепроницаемые слой находятся как сверху, так и снизу;
  • Трещинные и трещинно-карстовые подземные воды.

Напорные воды или Артезианские воды

Напорные воды или Артезианские воды – это артезианские бассейны вода в которых находится под напором/гидравлическим давлением между двумя водонепроницаемыми породами.

Ювенильные воды

Так же хотим сделать акцент на так называемые Ювенильные воды. Под которыми подразумеваются воды, происхождение которых обусловлено процессами синтеза водорода и кислорода в магматических расплавах. Далее, эти воды, поднимаясь вверх, смешиваются с другими видами Подземных вод. Гипотеза о Ювенильных водах впервые была сформулирована в 1902 году австрийским геологом Э. Зюссом.

Необходимо отметить тот факт, что в зонах вечной мерзлоты подземные воды верхнего уровня заморожены и находятся в твердом состоянии.

Одной из форм Подземных вод является так называемая «физически связанная вода». Такую формулировку она получила поскольку взаимодействуя с частицами породы притягивается ими. Чем меньше частицы тем больше воды они могут притягивать.

Много под землей и обычных вод, которые находится там благодаря гравитации, в следствии чего и называются «гравитационными водами». Среди них можно выделить два вида — напорные и безнапорные воды.

Физические свойства подземных вод

Выделяют такие физические свойства подземных вод:

  • Мутность и прозрачность;
  • Цветность;
  • Запах и вкус;
  • Температура;
  • Вязкость;
  • Электропроводность;
  • Радиоактивность.

Заключение

Тема Подземных вод весьма обширна и очевидно, что отобразить ее в рамках одной статьи просто невозможно. Мы постарались выделить наиболее важные, с нашей точки зрения, моменты. Мы будем рады если этот материал подтолкнет вас к более детальному изучению столь интересной темы.

Гидрогеология, или подземные воды планеты

ДАТА СОЗДАНИЯ ПУБЛИКАЦИИ:
Окт 17, 2014 23:54 Waterman

Источник