Упругость это какое свойство

Упругость это какое свойство thumbnail
  1. Физический энциклопедический словарь

Свойство тел изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внеш. воздействий.

Количественно У. выражается в том, что компоненты тензора напряжений (см. НАПРЯЖЕНИЕ МЕХАНИЧЕСКОЕ) в изотермич. условиях явл. функциями компонентов тензора деформации (см. ДЕФОРМАЦИЯ механическая), к-рые универсальны для данного материала и не зависят от того, в каком порядке происходит изменение разл. компонентов деформации до достижения ими рассматриваемых значений. В большинстве материалов (напр., в металлах, керамике, горных породах, древесине) при малых деформациях зависимости между напряжениями и деформациями можно считать линейными и описывать обобщённым Гука законом. Законам нелинейной У. можно придать форму, подобную обобщённому закону Гука, заменив модули упругости нек-рыми универсальными функциями (см. УПРУГОСТИ ТЕОРИЯ).

У. тел обусловлена силами вз-ствия атомов, из к-рых они построены. В тв. телах при темп-ре абс. нуля в отсутствии внеш. напряжений атомы занимают равновесные положения, в к-рых сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенц. энергия атома минимальна. Кроме сил притяжения и отталкивания, зависящих только от расстояния между атомами (центр. силы), в многоатомных молекулах и макроскопич. телах действуют также нецентральные силы, зависящие от т. н. валентных углов между прямыми, соединяющими данный атом с разл. его соседями (рис.). При равновесных значениях валентных углов нецентральные силы также уравновешены. Энергия макроскопич. тела зависит от межатомных расстояний и валентных углов, принимая миним. значение при равновесных значениях этих параметров.

Под действием внеш. напряжений атомы смещаются из своих равновесных положений, что сопровождается увеличением потенц. энергии тела на величину, равную работе внеш. напряжений по изменению объёма и формы тела. После снятия внеш. напряжений конфигурация упруго деформиров. тела с неравновесными межатомными расстояниями и валентными углами оказывается неустойчивой и самопроизвольно возвращается в равновесное состояние. Запасённая в теле избыточная потенц. энергия превращается в кинетич. энергию колеблющихся атомов, т. е. в теплоту. УПРУГОСТЬ

Шариковая модель элем. ячейки кубич. кристалла: а — в равновесии при отсутствии внеш. сил; б — под действием внеш. касательного напряжения.

Пока отклонения межатомных расстояний и валентных углов от их равновесных значений малы, они пропорц. действующим между атомами силам, подобно тому, как удлинение или сжатие пружины пропорц. приложенной силе. Поэтому тело можно представить как совокупность атомов-шариков, соединённых пружинами, ориентации к-рых фиксированы др. пружинами (рис.). Константы упругости этих пружин определяют модули упругости материала.

В жидкости тепловые колебания имеют амплитуду, сравнимую с равновесным межатомным расстоянием, вследствие чего атомы легко меняют своих соседей и не сопротивляются касат. напряжениям, если они прикладываются со скоростью, значительно меньшей скорости тепловых колебаний. Поэтому жидкости (как и газы) не обладают упругостью формы, а только объёма: уменьшение объёма пропорционально приложенному давлению.

В газообразном состоянии средние расстояния между атомами или молекулами значительно больше, чем в конденсированном. Упругость газов (паров) определяется тепловым движением молекул, ударяющихся о стенки сосуда, ограничивающего объём газа.

Источник:
Физический энциклопедический словарь
на Gufo.me

Значения в других словарях

  1. упругость —
    -и, ж. 1. Свойство по знач. прил. упругий. Упругость пружины. □ Он не сомкнул глаз во всю дорогу, несмотря на упругость подушек и мягкое колебанье голубой коляски.
    Малый академический словарь
  2. упругость —
    сущ., кол-во синонимов: 7 аэроупругость 1 гибкость 17 гидроупругость 1 зыбкость 12 пружинистость 2 тугость 1 эластичность 12
    Словарь синонимов русского языка
  3. Упругость —
    Свойство макроскопических тел сопротивляться изменению их объёма или формы под воздействием механических напряжений. При снятии приложенного напряжения объём и форма упруго деформированного тела восстанавливаются.
    Большая советская энциклопедия
  4. упругость —
    орф. упругость, -и
    Орфографический словарь Лопатина
  5. Упругость —
    Свойство твердых тел восстановлять свою форму при прекращении действия сил, изменяющих форму или размеры тел, если силы эти не превосходят тех пределов, за которыми восстановление формы тела совершается не вполне, так что остаются некоторые деформации…
    Энциклопедический словарь Брокгауза и Ефрона
  6. УПРУГОСТЬ —
    УПРУГОСТЬ — свойство тел восстанавливать свою форму и объем (твердые тела) или только объем (жидкости и газы) после прекращения действия внешних сил. Количественная характеристика упругих свойств материалов — модули упругости.
    Большой энциклопедический словарь
  7. упругость —
    УПР’УГОСТЬ, упругости, мн. нет, ·жен. 1. ·отвлеч. сущ. к упругий. Упругость пружины. Упругость мышц. Упругость походки. 2. Свойство тела приобретать первоначальную форму и объем после прекращения действия на него какой-нибудь силы.
    Толковый словарь Ушакова
  8. упругость —
    Упругость, упругости, упругости, упругостей, упругости, упругостям, упругость, упругости, упругостью, упругостями, упругости, упругостях
    Грамматический словарь Зализняка
  9. упругость —
    УПРУГОСТЬ Свойство тел изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать свою конфигурацию при прекращении внешних воздействий. — упругость дорожки. Свойство дорожки, верхнего слоя покрытий стадиона, равнозначное твердости.
    Словарь спортивных терминов
  10. упругость —
    УПРУГОСТЬ -и; ж. 1. к Упругий. У. пружины. У. стали. У. мускулов. У. волны. У. походки. У. звука. 2. Физ. Свойство тел, вещества восстанавливать свою форму и объём (твёрдые тела) или только объём (жидкости и газы) после прекращения воздействия на них внешних сил. Коэффициент упругости.
    Толковый словарь Кузнецова
  11. упругость —
    Упру́г/ость/.
    Морфемно-орфографический словарь
  12. Упругость —
    Горных пород (a. rock elasticity; н. Gesteinselastizitat; ф. elasticite des roches; и. elasticidad de rocas, flexibilidad de rocas) — свойство г. п. восстанавливать исходную форму и размеры после снятия механич. нагрузки.
    Горная энциклопедия
  13. упругость —
    упругость ж. 1. Отвлеч. сущ. по прил. упругий I 2. Способность какого-либо тела приобретать первоначальную форму после прекращения действия на неё какой-либо силы.
    Толковый словарь Ефремовой
  14. упругость —
    См. упругий
    Толковый словарь Даля
Читайте также:  Какими свойствами обладает песка

Упругость это какое свойство

Источник

  1. Большая советская энциклопедия

Упру́гость

Свойство макроскопических тел сопротивляться изменению их объёма или формы под воздействием механических напряжений. При снятии приложенного напряжения объём и форма упруго деформированного тела восстанавливаются.

У. тел обусловлена силами взаимодействия атомов, из которых они построены. В твёрдых телах при температуре абсолютного нуля в отсутствии внешних напряжений атомы занимают равновесные положения, в которых сумма всех сил, действующих на каждый атом со стороны остальных, равна нулю, а потенциальная энергия атома минимальна. Кроме сил притяжения и отталкивания, зависящих только от расстояния (рис. 1) между атомами (центральные силы), в многоатомных молекулах и макроскопических телах действуют также угловые силы, зависящие от т. н. валентных углов между прямыми, соединяющими данный атом с различными его соседями (рис. 2). При равновесных значениях валентных углов угловые силы также уравновешены. Энергия макроскопического тела зависит от межатомных расстояний и валентных углов, принимая минимальное значение при равновесных значениях этих параметров.

Под действием внешних напряжений атомы смещаются из своих равновесных положений, что сопровождается увеличением потенциальной энергии тела на величину, равную работе внешних напряжений по изменению объёма и формы тела. После снятия внешних напряжений конфигурация упруго деформированного тела с неравновесными межатомными расстояниями и валентными углами оказывается неустойчивой и самопроизвольно возвращается в равновесное состояние, точнее, атомы колеблются около равновесных положений. Запасённая в теле избыточная потенциальная энергия превращается в кинетическую энергию колеблющихся атомов, т. е. в тепло. Пока отклонения межатомных расстояний и валентных углов от их равновесных значений малы, они пропорциональны действующим между атомами силам, подобно тому как удлинение или сжатие пружины пропорционально приложенной силе. Поэтому тело можно представить как совокупность атомов-шариков, соединённых пружинами, ориентации которых фиксированы др. пружинами (рис. 2). Константы упругости этих пружин определяют Модули упругости материала, а упругая деформация тела пропорциональна приложенному напряжению, т. е. определяется Гука законом, который является основой упругости теории (См. Упругости теория) и сопротивления материалов.

При конечных температурах (ниже температур плавления) даже без приложения и снятия внешних напряжений атомы совершают малые тепловые колебания около положений равновесия. Это приводит к тому, что модули упругости материала зависят от температуры, но не меняет существа рассмотренных явлений.

В жидкости тепловые колебания имеют амплитуду, сравнимую с равновесным расстоянием r0, вследствие чего атомы легко меняют своих соседей и не сопротивляются касательным напряжениям, если они прикладываются со скоростью, значительно меньшей скорости тепловых колебаний. Поэтому жидкости (как и газы) не обладают упругостью формы.

В газообразном состоянии средние расстояния между атомами или молекулами значительно больше, чем в конденсированном. Упругость газов (паров) определяется тепловым движением молекул, ударяющихся о стенки сосуда, ограничивающего объём газа.

Лит.: Фейнман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, [в.] 7, М., 1966, гл. 38, 39; Смирнов А. А., Молекулярно-кинетическая теория металлов, М., 1966, гл. 2; Френкель Я. И., Введение в теорию металлов, 4 изд., Л., 1972, гл. 2.

А. Н. Орлов.

Упругость

Рис. 1. Зависимость потенциальной энергии взаимодействия двух атомов от расстояния r между ними. Равновесное состояние r0 отвечает наименьшему значению потенциальной энергии. На этом расстоянии силы притяжения и отталкивания между атомами уравновешены.

Упругость. Рис. 2

Рис. 2. Шариковая модель элементарной ячейки кубического кристалла: а — в равновесии при отсутствии внешних сил; б — при действии внешнего касательного напряжения.

Источник:
Большая советская энциклопедия
на Gufo.me

Значения в других словарях

  1. упругость —
    -и, ж. 1. Свойство по знач. прил. упругий. Упругость пружины. □ Он не сомкнул глаз во всю дорогу, несмотря на упругость подушек и мягкое колебанье голубой коляски.
    Малый академический словарь
  2. упругость —
    сущ., кол-во синонимов: 7 аэроупругость 1 гибкость 17 гидроупругость 1 зыбкость 12 пружинистость 2 тугость 1 эластичность 12
    Словарь синонимов русского языка
  3. упругость —
    орф. упругость, -и
    Орфографический словарь Лопатина
  4. Упругость —
    Свойство твердых тел восстановлять свою форму при прекращении действия сил, изменяющих форму или размеры тел, если силы эти не превосходят тех пределов, за которыми восстановление формы тела совершается не вполне, так что остаются некоторые деформации…
    Энциклопедический словарь Брокгауза и Ефрона
  5. УПРУГОСТЬ —
    УПРУГОСТЬ — свойство тел восстанавливать свою форму и объем (твердые тела) или только объем (жидкости и газы) после прекращения действия внешних сил. Количественная характеристика упругих свойств материалов — модули упругости.
    Большой энциклопедический словарь
  6. упругость —
    УПР’УГОСТЬ, упругости, мн. нет, ·жен. 1. ·отвлеч. сущ. к упругий. Упругость пружины. Упругость мышц. Упругость походки. 2. Свойство тела приобретать первоначальную форму и объем после прекращения действия на него какой-нибудь силы.
    Толковый словарь Ушакова
  7. упругость —
    Упругость, упругости, упругости, упругостей, упругости, упругостям, упругость, упругости, упругостью, упругостями, упругости, упругостях
    Грамматический словарь Зализняка
  8. упругость —
    УПРУГОСТЬ Свойство тел изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать свою конфигурацию при прекращении внешних воздействий. — упругость дорожки. Свойство дорожки, верхнего слоя покрытий стадиона, равнозначное твердости.
    Словарь спортивных терминов
  9. упругость —
    УПРУГОСТЬ -и; ж. 1. к Упругий. У. пружины. У. стали. У. мускулов. У. волны. У. походки. У. звука. 2. Физ. Свойство тел, вещества восстанавливать свою форму и объём (твёрдые тела) или только объём (жидкости и газы) после прекращения воздействия на них внешних сил. Коэффициент упругости.
    Толковый словарь Кузнецова
  10. УПРУГОСТЬ —
    Свойство тел изменять форму и размеры под действием нагрузок и самопроизвольно восстанавливать исходную конфигурацию при прекращении внеш. воздействий. Количественно У. выражается в том, что компоненты тензора напряжений (см.
    Физический энциклопедический словарь
  11. упругость —
    Упру́г/ость/.
    Морфемно-орфографический словарь
  12. Упругость —
    Горных пород (a. rock elasticity; н. Gesteinselastizitat; ф. elasticite des roches; и. elasticidad de rocas, flexibilidad de rocas) — свойство г. п. восстанавливать исходную форму и размеры после снятия механич. нагрузки.
    Горная энциклопедия
  13. упругость —
    упругость ж. 1. Отвлеч. сущ. по прил. упругий I 2. Способность какого-либо тела приобретать первоначальную форму после прекращения действия на неё какой-либо силы.
    Толковый словарь Ефремовой
  14. упругость —
    См. упругий
    Толковый словарь Даля
Читайте также:  Какими свойствами обладают полимеры

Упругость это какое свойство

Источник

УПРУГОСТЬ, МОДУЛЬ УПРУГОСТИ, ЗАКОН ГУКА. Упругость – свойство тела деформироваться под действием нагрузки и восстанавливать первоначальную форму и размеры после ее снятия. Проявление упругости лучше всего проследить, проведя простой опыт с пружинными весами – динамометром, схема которого показана на рис.1.

Упругость это какое свойство

При нагрузке в 1 кг стрелка-индикатор сместится на 1 деление, при 2 кг – на два деления, и так далее. Если нагрузки последовательно снимать, процесс идет в обратную сторону. Пружина динамометра – упругое тело, ее удлинение Dl, во-первых, пропорционально нагрузке P и, во-вторых полностью исчезает при полном снятии нагрузки. Если построить график, отложить по вертикали оси величины нагрузки, а по горизонтальной – удлинение пружины, то получаются точки, лежащие на прямой, проходящей через начало координат, рис.2. Это справедливо как для точек, изображающих процесс нагружения так и для точек, соответствующих нагрузке.

Угол наклона прямой характеризует способность пружины сопротивляться действию нагрузки: ясно, что «слабая» пружина (рис.3). Эти графики называются характеристиками пружины.

Тангенс угла наклона характеристики называется жесткостью пружины С. Теперь можно записать уравнение деформирования пружины Dl = P / C

Жесткость пружины С имеет размерность кг / смup122 и зависит от материала пружины (например, сталь или бронза) и ее размеров – длины пружины, диаметра ее витка и толщины проволоки, из которой она сделана.

В той или иной мере все тела, которые можно считать твердыми, обладают свойством упругости, но заметить это обстоятельство можно далеко не всегда: упругие деформации обычно очень малы и наблюдать их без специальных приборов удается практически только при деформировании пластинок, струн, пружин, гибких стержней.

Прямым следствием упругих деформаций являются упругие колебания конструкций и природных объектов. Можно легко обнаружить дрожание стального моста, по которому идет поезд;иногда можно услышать, как звенит посуда, когда на улице проезжает тяжелый грузовик; все струнные музыкальные инструменты так или иначе преобразуют упругие колебания струн в колебания частичек воздуха;в ударных инструментах тоже упругие колебания (например, мембраны барабана) преобразуются в звук.

При землетрясении происходят упругие колебания поверхности земной коры; при сильном землетрясении кроме упругих деформаций возникают пластические (которые остаются после катаклизма как изменения микрорельефа), а иногда появляются трещины. Эти явления не относятся к упругости: можно сказать, что в процессе деформирования твердого тела сначала всегда появляются упругие деформации, потом пластические, и, наконец, образуются микротрещины. Упругие деформации очень малы – не больше 1%, а пластические могут достигнуть 5–10% и более, поэтому обычное представление о деформациях относится к пластическим деформациям – например, пластилин или медная проволока. Однако, несмотря на свою малость, упругие деформации играют важнейшую роль в технике: расчет на прочность авиалайнеров, подводных лодок, танкеров, мостов, туннелей, космических ракет – это, в первую очередь, научный анализ малых упругих деформаций, возникающих в перечисленных объектах под действием эксплуатационных нагрузок.

Еще в неолите наши предки изобрели первое дальнобойное оружие – лук и стрелы, используя упругость изогнутой ветки дерева; потом катапульты и баллисты, построенные для метания больших камней, использовали упругость канатов, свитых из растительных волокон или даже из женских длинных волос. Эти примеры доказывают, что проявление упругих свойств было давно известно и давно использовалось людьми. Но понимание того, что любое твердое тело под действием даже небольших нагрузок обязательно деформируется, хотя и на очень малую величину, впервые появилось в 1660 у Роберта Гука, современника и коллеги великого Ньютона. Гук был выдающимся ученым, инженером и архитектором. В 1676 он сформулировал свое открытие очень кратко, в виде латинского афоризма: «Ut tensio sic vis», смысл которого состоит в том, что «какова сила, таково и удлинение». Но опубликовал Гук не этот тезис, а только его анаграмму: «ceiiinosssttuu». (Таким образом тогда обеспечивали приоритет, не раскрывая сути открытия.)

Читайте также:  Какими свойствами обладает редька

Вероятно, в это время Гук уже понимал, что упругость – универсальное свойство твердых тел, но считал необходимым подтвердить свою уверенность экспериментально. В 1678 вышла книга Гука, посвященная упругости, где описывались опыты, из которых следует, что упругость есть свойство «металлов, дерева, каменных пород, кирпича, волос, рога, шелка, кости, мышцы, стекла и т.п.» Там же была расшифрована анаграмма. Исследования Роберта Гука привели не только к открытию фундаментального закона упругости, но и к изобретению пружинных хронометров (до того были только маятниковые). Изучая различные упругие тела (пружины, стержни, луки), Гук установил, что «коэффициент пропорциональности» (в частности, жесткость пружины) сильно зависит от формы и размеров упругого тела, хотя материал играет решающую роль.

Прошло более ста лет, в течение которых опыты с упругими материалами проводили Бойль, Кулон, Навье и некоторые другие, менее известные физики. Одним из основных опытов стало растяжение пробного стержня из изучаемого материала. Для сравнения результатов, полученных в разных лабораториях, нужно было либо использовать всегда одинаковые образцы, либо научиться исключать слияние размеров образца. И в 1807 появилась книга Томаса Юнга, в которой был введен модуль упругости – величина, описывающая свойство упругости материала независимо от формы и размеров образца, который использовался в опыте. Для этого нужно силу P, приложенную к образцу, разделить на площадь сечения F, а произошедшее при этом удлинение Dl разделить на первоначальную длину образца l. Соответствующие отношения – это напряжение s и деформация e.

Теперь закон Гука о пропорциональности можно записать в виде:

s = Еe

Коэффициент пропорциональности Е называется модулем Юнга, имеет размерность, как у напряжения (МПа), а обозначение его есть первая буква латинского слова elasticitat – упругость.

Модуль упругости Е – это характеристика материала того же типа, как его плотность или теплопроводность.

В обычных условиях, чтобы продеформировать твердое тело, требуется значительная сила. Это означает, что модуль Е должен быть большой величиной – по сравнению с предельными напряжениями, после которых упругие деформации сменяются пластическими и форма тела заметно искажается.

Если измерять величину модуля Е в мегапаскалях (МПа), получатся такие средние значения:

Сталь 20·104
Медь 10·104
Алюминий 7·104
Стекло 7·104
Кость 3·104
Дерево 1·104
Резина* 0,001·104

Физическая природа упругости связана с электромагнитным взаимодействием (в том числе с силами Ван-дер-Ваальса в решетке кристалла). Можно считать, что упругие деформации связаны с изменением расстояния между атомами.

Упругий стержень имеет еще одно фундаментальное свойство – утоньшаться при растяжении. То, что канаты при растяжении становятся тоньше, было известно давно, но специально поставленные опыты показали, что при растяжении упругого стержня всегда имеет место закономерность: если измерить поперечную деформацию e’, т.е. уменьшение ширины стержня db , деленное на первоначальную ширину b, т.е.

и разделить ее на продольную деформацию e, то это отношение остается постоянным при всех значениях растягивающей силы P, то есть

(Полагают, что e’< 0 ; поэтому используется абсолютная величина). Константа v называется коэффициентом Пуассона (по имени французского математика и механика Симона Дени Пуассона) и зависит только от материала стержня, но не зависит от его размеров и формы сечения. Величина коэффициента Пуассона для разных материалов изменяется от 0 (у пробки) до 0,5 (у резины). В последнем случае объем образца в процессе растяжения не изменяется (такие материалы называются несжимаемыми). Для металлов значения различны, но близки к 0,3.

Модуль упругости E и коэффициент Пуассона вместе образуют пару величин, которые полностью характеризуют упругие свойства любого конкретного материала (имеются в виду изотропные материалы, т.е. такие, у которых свойства не зависят от направления; пример древесины показывает, что это не всегда так – ее свойства вдоль волокон и поперек волокон сильно различаются. Это – анизотропный материал. Анизотропными материалами являются монокристаллы, многие композиционные материалы (композиты) типа стеклопластика. Такие материалы тоже в известных пределах обладают упругостью, но само явление оказывается значительно более сложным).

Если от рассмотрения растяжения стержня перейти к рассмотрению некоторого упругого тела, подверженного действию заданных сил, то следует выбрать некоторую точку M и перейти к рассмотрению ее малой окрестности в виде параллелепипеда с ребрами, параллельными координатным осям XYZ. Как известно (см. ДЕФОРМАЦИЯ), на гранях параллелепипеда действуют напряжения, которые задаются тензором s, что приводит к деформациям, которые задаются тензором e.

В общем случае закон Гука устанавливает связь между компонентами этих тензоров, которую можно записать в виде:

,

,

,

, ,

В последние три уравнения входит величина G, которая называется модулем сдвига и выражается через E и v по формуле:

Модуль сдвига можно непосредственно определить из опыта на кручение круглого образца.

В физике для идеального газа вводится уравнение состояния (уравнение Клапейрона – Менделеева). Можно сказать, что закон Гука – это уравнение состояния для идеально упругого тела.

Владимир Кузнецов

Источник