Какими свойствами обладают полимеры

Какими свойствами обладают полимеры thumbnail

Полиме́ры (от греч. πολύ «много» + μέρος «часть») — вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимерами могут быть неорганические и органические, аморфные и кристаллические вещества. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются[1]. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов[2].

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (−CH2−CHCl−)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических преобразований. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

Особенности[править | править код]

Особые механические свойства

  • эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.

Сополимеры[править | править код]

Полимеры, изготовленные из разных мономеров или химически связанных молекул разных полимеров, называют сополимерами. Например, ударопрочный полистирол является сополимером полистирол−полибутадиен[3].

Сополимеры различаются по строению, технологии изготовления и получаемым свойствам. На 2014 год созданы технологии[3]:

  • статистические сополимеры, образованные цепочками, содержащими химические группы различной природы, получают путём полимеризации смеси нескольких исходных мономеров;
  • чередующиеся сополимеры характеризуются цепочками, в которых чередуются радикалы разных мономеров;
  • привитые сополимеры образуются путём прикрепления цепочек молекул второго мономера сбоку к макромолекулам, образованным из основного мономера;
  • гребнеобразными сополимерами называют привитые сополимеры с очень длинными боковыми цепочками;
  • блок-сополимеры построены из достаточно протяжённых цепочек (блоков) одного мономера, соединённых по концам с достаточно протяжёнными цепочками другого мономера.

Свойства сополимеров[править | править код]

Гребнеобразные сополимеры можно составить из материалов с разными свойствами, что даёт такому сополимеру принципиально новые свойства, например, жидкокристаллические[3].

В блок-сополимерах, составленных из компонент с разными свойствами, возникают суперрешетки, построенные из выделившихся в отдельную фазу блоков различной химической природы. Размеры блоков зависят от соотношения исходных мономеров. Так, хрупкому полистиролу добавляют устойчивость к растяжению до 40 % путём сополимеризации с 5−10 % полибутадиена, и получается ударопрочный полистирол, а при 19 % полистирола в полибутадиене материал демонстрирует каучукоподобное поведение[3].

Классификация[править | править код]

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
  • Неорганические полимеры. Они не содержат в повторяющемся звене связей C−C, но способны содержать органические радикалы, как боковые заместители.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых — полимеры (с разным составом и свойствами).

Читайте также:  Какие свойства тела характеризуют его момент инерции

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных (см. Химическая эволюция).

Типы[править | править код]

Синтетические полимеры. Искусственные полимерные материалы[править | править код]

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях — путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы — целлулоид — был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу — продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем — также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата — без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон — искусственная шерсть из полиакрилонитрила, — замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк).
Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны — наиболее распространённые герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны — элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Читайте также:  Какие категории аристотеля выражают акцидентные свойства вещи

Список замыкают так называемые уникальные полимеры, синтезированные в 60—70 годы XX века. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Огнеупорные полимеры[править | править код]

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путём включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике.

Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол.

Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня.

Синтез[править | править код]

Полимеризация — это процесс объединения множества небольших молекул, известных как мономеры, в ковалентно связанную цепь или сеть. В процессе полимеризации некоторые химические группы могут потеряться из каждого мономера. Это происходит при полимеризации ПЭТ-полиэстера. Мономеры терефталевая кислота (HOOC — C 6 H 4  — COOH) и этиленгликоль (HO  — CH 2  — CH 2  — OH), но повторяющийся элемент  — OC  — C 6 H 4  — COO  — CH 2  — CH 2  — О  —, что соответствует комбинации двух мономеров с потерей двух молекул воды. Отдельный фрагмент каждого мономера, который включен в полимер, известен как составное звено.

Методы лабораторного синтеза обычно делятся на две категории: ступенчатая полимеризация и цепная полимеризация[4]. Существенное различие между ними заключается в том, что при полимеризации с ростом цепи мономеры добавляются в цепь только по одному[5], например, в полиэтилене; тогда как при ступенчатой полимеризации цепи мономеров могут соединяться друг с другом напрямую[6], например, в полиэстере. Более современные методы, такие как плазменная полимеризация, не вписываются ни в одну из этих категорий. Реакции синтетической полимеризации могут проводиться с катализатором или без него. Лабораторный синтез биополимеров, особенно белков является областью интенсивных исследований.

Применение[править | править код]

Благодаря ценным свойствам, полимеры применяются в машиностроении, текстильной промышленности, сельском хозяйстве, медицине, автомобиле- и судостроении, авиастроении и в быту (текстильные и кожевенные изделия, посуда, клей и лаки, украшения и другие предметы). На основании высокомолекулярных соединений изготовляют резины, волокна, пластмассы, плёнки и лакокрасочные покрытия. Все ткани живых организмов представляют высокомолекулярные соединения.

Наука о полимерах[править | править код]

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х годах XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов.
Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

См. также[править | править код]

  • Пластмассы
  • Перечень пластмасс
  • Биопластики

Примечания[править | править код]

Литература[править | править код]

  • Виноградова С. В., Васнев В. А. Поликонденсационные процессы и полимеры. : М.: МАИК «Наука/Интерпериодика», 2000, 372 с.
  • Волынский, Александр Львович. Как смешать полимеры? // Природа. — 2014. — № 3. — С. 44−52.
  • Коршак В. В., Виноградова С. В. Равновесная поликонденсация. , М.: Наука, 1968.
  • Коршак В. В., Виноградова С. В. Неравновесная поликонденсация. , М.: Наука, 1972.
  • Кривошей В. Н. Тара из полимерных материалов, М., 1990.
  • Махлис Ф. А. Федюкин Д. Л., Терминологический справочник по резине, М., 1989.
  • Тагер А. А. Физико-химия полимеров, М.: Научный мир, 2007.;
  • Шефтель В. О. Вредные вещества в пластмассах, М., 1991.
  • Энциклопедии полимеров, т. 1 — 3, гл. ред. В. А. Каргин, М., 1972—1977.
Читайте также:  При какой температуре сталь теряет магнитные свойства

Источник

Полимеры — это высокомолекулярные вещества с молекулярной массой от Полимерынескольких тысяч до нескольких миллионов. Свойства полимеров во многом обусловлены не только молекулярной массой, но и химическим составом звеньев, пространственной конфигурацией молекул, степенью разветвленности молекул, типом связей между молекулами, способом производства полимера. В зависимости от всех этих параметров свойства полимеров могут различаться очень сильно.

Практически все полимеры являются хорошими диэлектриками, обладают низкой теплопроводностью, высокой механической прочностью. Стеклообразные полимеры бьются без острых осколков. Линейные полимеры обладают способностью к обратимым деформациям; поддаются ориентации макромолекул под влиянием механических нагрузок (на этом свойстве основано производство пленок и волокон). Важным качеством полимеров является резкое изменение характеристик при введении небольших количеств примесей.

Полимеры существуют в различных агрегатных состояниях: в виде тягучей жидкости (смазки, клеи, лаки и краски, герметики), в виде эластичных материалов (резины, силикон, эластомеры, поролон) и в виде твердых пластмасс (полиэтилен, полипропилен, поликарбонат и т.д.).

Полимеры в качестве химических веществ могут:
— образовывать новые химические связи между молекулами;
— образовывать новые связи между отдельными звеньями молекулы;
— присоединять боковые звенья к основной цепочке молекул;
— распадаться на отдельные мономеры.

Образование полимеров

ПолимерыИскусственные полимеры получают в результате трех типов реакций: полимеризации, поликонденсации, химических реакций. Полимеризацией называется процесс присоединения повторяющихся цепочек молекул (звеньев) к активному центру роста макромолекулы. Механизм полимеризации состоит из таких этапов, как:
— образование центров полимеризации;
— рост молекул путем последовательного присоединения новых звеньев;
— перенос центров полимеризации на другие молекулы, которые начинают активно расти;
— разветвление молекул;
— прекращение процесса роста молекул.

Для того чтобы вызвать полимеризацию в исходном низкомолекулярном сырье, используют различные способы воздействия: высокое давление, высокие температуры, воздействие светом или облучением, катализатором. В результате полимеризации химический состав сырья и готового продукта остается одним и тем же, но меняется структура вещества.

Поликонденсацией называется процесс изготовления полимеров из многофункциональных соединений методом перегруппировки атомов и отделения побочных продуктов (воды, низкомолекулярных соединений). Способом поликонденсации, например, производят поликарбонаты, полиуретаны, фенолальдегидные смолы.

Применение

Современная экономика просто немыслима без различных полимеров. Да мы Полимерыи сами состоим из природных полимеров: белков, нуклеинов, полисахаридов.

Производство полимеров в промышленных масштабах началось в начале 20-го века. Практически одновременно промышленность начала производить искусственные полимеры методом переработки целлюлозы и синтетические полимеры методом переработки низкомолекулярного сырья (фенола, формальдегида, стирола, винилхлорида, акрила). На основе эфиров целлюлозы изготавливали, в частности, целлулоид, пленки, лакокрасочные материалы. Например, развитие кинематографа напрямую связано с появлением нитроцеллюлозных прозрачных пленок. Из синтетических полимеров перед Второй мировой войной особо важным было получение искусственного каучука, оргстекла, фенолформальдегидных смол.

В настоящее время полимеры используются практически во всех областях производства. Из них делают игрушки и строительные материалы, имплантаты, ткани, лекарственные средства, смазку для станков, защитные маски и очки, оптические стекла, навесы и окна, мебельные ткани и наполнители, кожезаменители и обработанные натуральные кожи, резины, упаковочные материалы, рекламную продукцию, корпуса приборов, ткани и волокна искусственные и синтетические, пленки различного назначения, конструкционные материалы, материалы для электротехнической и радиотехнической индустрии, украшения, ионообменные и эпоксидные смолы, пластики с экстремальными свойствами (жаростойкие и морозоустойчивые, повышенной твердости, пожаробезорасные  ит.д.). Полимеры служат основой для производства композиционных материалов.

В магазине «ПраймКемикалсГрупп» широко представлена продукция из полимеров — это и пластиковая лабораторная посуда, и средства защиты, и различные лабораторные принадлежности. Также у нас можно купить и некоторые вещества, являющиеся полимерами — целлюлозу, крахмал, полиэтиленгликоль и другие, по выгодным ценам и с доставкой.

Источник