Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью thumbnail

1. Положение алюминия в периодической системе химических элементов
2. Электронное строение алюминия 
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой 
7.1.3. Взаимодействие с фосфором
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие с щелочами
7.2.6. Взаимодействие с окислителями

Оксид алюминия 
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие с основными оксидами
2.2. Взаимодействие с основаниями
2.3. Взаимодействие с водой
2.4. Взаимодействие с кислотными оксидами
2.5. Взаимодействие с кислотами
2.6. Взаимодействие с восстановителями
2.7. Вытеснение более летучих оксидов из солей

Гидроксид алюминия 
 1. Способы получения
 2. Химические свойства
2.1. Взаимодействие с кислотами
2.2. Взаимодействие с кислотными оксидами
2.3. Взаимодействие с щелочами 
2.4. Разложение при нагревании

Соли алюминия 

Бинарные соединения алюминия

Алюминий

Положение в периодической системе химических элементов

Алюминий расположены в главной подгруппе III группы  (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства 

Электронная конфигурация  алюминия в основном состоянии:

+13Al 1s22s22p63s23p1     1s Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью   2s Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью  2p Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью   3s Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью  3p Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Электронная конфигурация  алюминия в возбужденном состоянии:

+13Al* 1s22s22p63s13p2   1s Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью   2s Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью  2p Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью   3s Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью  3p Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства 

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Температура плавления 660оС, температура кипения 1450оС, плотность алюминия 2,7 г/см3.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре  — около 8%.

В природе алюминий встречается в виде соединений:

Бокситы Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3) — гидрат оксида алюминия

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Способы получения 

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970оС) Na3AlF6, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

Al2O3 → Al3+ + AlO33-

На катоде происходит восстановление ионов алюминия:

Катод:  Al3+ +3e → Al0

На аноде происходит окисление алюминат-ионов:

Анод: 4AlO33- — 12e → 2Al2O3 + 3O2

Суммарное уравнение электролиза расплава оксида алюминия:

2Al2O3 → 4Al + 3O2

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → 4Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами. При этом образуется белый аморфный осадок гидроксида алюминия.

Например, хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Al(OH)3 + NaOH = Na[Al(OH)4]

Обратите внимание,  если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также выпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O = Al(OH)3 ↓ + 3NH4Cl

Al3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4+

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Химические свойства

1. Алюминий – сильный восстановитель. Поэтому он реагирует со многими неметаллами.

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

2Al  +  3I2  → 2AlI3

1.2. Алюминий реагирует с серой с образованием сульфидов:

2Al  +  3S  → Al2S3

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

1.4. С азотом алюминий реагирует при нагревании до 1000оС с образованием нитрида:

2Al +N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

4Al + 3C → Al4C3

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

4Al + 3O2 → 2Al2O3

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти.  Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки. А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

Читайте также:  Какое влияние оказывает углерод на свойства сплавов

2Al0 + 6H2+O → 2Al+3(OH)3 + 3H20

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути (II):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Видеоопыт  взаимодействия амальгамы алюминия с водой можно посмотреть здесь.

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, алюминий бурно реагирует с соляной кислотой:

2Al + 6HCl = 2AlCl3 + 3H2↑

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2Al + 6H2SO4(конц.) → Al2(SO4)3 + 3SO2 + 6H2O

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

10Al + 36HNO3 (разб) → 3N2 + 10Al(NO3)3 + 18H2O

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

8Al + 30HNO3(оч.разб.) →  8Al(NO3)3 + 3NH4NO3 + 9H2O

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2 ↑

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

2Al + 6NaOH → 2Na3AlO3 + 3H2 ↑

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → NaAlO2 + 3H2↑ + Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов. Процесс восстановления металлов из оксидов называется алюмотермия.

Например, алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Еще пример: алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

8Al  +  3Fe3O4 →  4Al2O3  +  9Fe

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

2Al  +  3Na2O2  → 2NaAlO2   +  2Na2O

8Al  +  3KNO3 +  5KOH  +  18H2O →  8K[Al(OH)4]     +  3NH3

10Al   +  6KMnO4  +  24H2SO4  → 5Al2(SO4)3  +  6MnSO4  +  3K2SO4  +  24H2O

2Al  +  NaNO2 +  NaOH  +  5H2O →  2Na[Al(OH)4]  +  NH3

Al   +  3KMnO4  +  4KOH →  3K2MnO4  +  K[Al(OH)4]  

4Al  +  K2Cr2O7 → 2Cr   +  2KAlO2   +   Al2O3

Алюминий – ценный промышленный металл, который подвергается вторичной переработке. Узнать подробнее о приеме алюминия на переработку, а также об актуальных ценах на данный вид металла можно здесь.

Оксид алюминия

Способы получения

Оксид алюминия можно получить различными методами:

1. Горением алюминия на воздухе: 

4Al + 3O2 → 2Al2O3

2. Разложением гидроксида алюминия при нагревании:

2Al(OH)3 → Al2O3 + 3H2O

 3. Оксид алюминия можно получить разложением нитрата алюминия:

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

Химические свойства

Оксид алюминия — типичный амфотерный оксид. Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодействии оксида алюминия с основными оксидами образуются соли-алюминаты.

Например, оксид алюминия взаимодействует с оксидом натрия:

Na2O  +  Al2O3  → 2NaAlO2

2. Оксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиалюминаты, а в растворе – комплексные соли. При этом оксид алюминия проявляет кислотные свойства.

Например, оксид алюминия взаимодействует с гидроксидом натрия в расплаве с образованием алюмината натрия и воды:

2NaOH  +  Al2O3  → 2NaAlO2 +  H2O

Оксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

Al2O3  +  2NaOH +  3H2O →  2Na[Al(OH)4]

3. Оксид алюминия  не взаимодействует с водой.

4. Оксид алюминия взаимодействует с кислотными оксидами (сильных кислот). При этом образуются соли алюминия. При этом оксид алюминия проявляет основные свойства.

Например, оксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия: 

Al2O3 + 3SO3 → Al2(SO4)3

5. Оксид алюминия взаимодействует с растворимыми кислотами с образованием средних и кислых солей.

Например, оксид алюминия реагирует с серной кислотой:

Al2O3  +  3H2SO4  → Al2(SO4)3  +  3H2O

6. Оксид алюминия проявляет слабые окислительные свойства.

Например, оксид алюминия реагирует с гидридом кальция с образованием алюминия, водорода и оксида кальция:

Al2O3  +  3CaH2 → 3CaO  +  2Al  +  3H2

Электрический ток восстанавливает алюминий из оксида (производство алюминия):

2Al2O3  → 4Al + 3O2

7. Оксид алюминия — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната натрия:

Al2O3  +  Na2CO3 → 2NaAlO2  +  CO2

Гидроксид алюминия

Способы получения

1. Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.

Например, хлорид алюминия реагирует с водным раствором аммиака с образованием гидроксида алюминия и хлорида аммония:

AlCl3 + 3NH3 + 3H2O = Al(OH)3 + 3NH4Cl

2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоалюмината натрия:

Na[Al(OH)4] + СО2 = Al(OH)3 + NaНCO3 

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество Na[Al(OH)4] на составные части: NaOH и Al(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Al(OH)3 не реагирует с СО2, то мы записываем справа Al(OH)3  без изменения.

3. Гидроксид алюминия можно получить действием недостатка щелочи на избыток соли алюминия.

Например, хлорид алюминия реагирует с недостатком гидроксида калия с образованием гидроксида алюминия и хлорида калия:

AlCl3 + 3KOH(недост) = Al(OH)3↓+ 3KCl

4. Также гидроксид алюминия образуется при взаимодействии растворимых солей алюминия с растворимыми карбонатами, сульфитами и сульфидами. Сульфиды, карбонаты и сульфиты алюминия необратимо гидролизуются в водном растворе.

Читайте также:  К каким свойствам тканей относят гигроскопичность

Например: бромид алюминия реагирует с карбонатом натрия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется бромид натрия:

2AlBr3  +  3Na2CO3  + 3H2O  =  2Al(OH)3↓  +  CO2↑ +  6NaBr

Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида натрия:

2AlCl3  +  3Na2S  +  6H2O  =  2Al(OH)3  +  3H2S↑  +  6NaCl

Химические свойства

1. Гидроксид алюминия реагирует с растворимыми кислотами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов и типа соли.

Например, гидроксид алюминия взаимодействует с азотной кислотой с образованием нитрата алюминия:

Al(OH)3 + 3HNO3 → Al(NO3)3 + 3H2O

Al(OH)3  +  3HCl →  AlCl3  +  3H2O

2Al(OH)3  +  3H2SO4  → Al2(SO4)3  +  6H2O

Al(OH)3  +  3HBr →  AlBr3  +  3H2O

2. Гидроксид алюминия взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

2Al(OH)3 + 3SO3 → Al2(SO4)3 + 3H2O

3. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиалюминаты, а в растворе – комплексные соли. При этом гидроксид алюминия проявляет кислотные свойства.

Например, гидроксид алюминия взаимодействует с гидроксидом калия в расплаве с образованием алюмината калия и воды:

2KOH  +  Al(OH)3  → 2KAlO2 + 2H2O

Гидроксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

Al(OH)3 + KOH  →  K[Al(OH)4]

4. Гидроксид алюминия разлагается при нагревании:

2Al(OH)3 → Al2O3 + 3H2O

Видеоопыт взаимодействия гидроксида алюминия с соляной кислотой и щелочами (амфотерные свойства гидроксида алюминия) можно посмотреть здесь.

Соли алюминия 

Нитрат и сульфат алюминия

Нитрат алюминия при нагревании разлагается на оксид алюминия, оксид азота (IV)  и кислород:

4Al(NO3)3 → 2Al2O3  +  12NO2  +   3O2

Сульфат алюминия при сильном нагревании разлагается аналогично — на оксид алюминия, сернистый газ и кислород:

2Al2(SO4)3 → 2Al2O3   +  6SO2  +  3O2

Комплексные соли алюминия

Для описания свойств комплексных солей алюминия — гидроксоалюминатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы — гидроксид алюминия и гидроксид щелочного металла.

Например, тетрагидроксоалюминат натрия  разбиваем на гидроксид алюминия и гидроксид натрия:

Na[Al(OH)4] разбиваем на NaOH и Al(OH)3

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы алюминия реагируют с кислотными оксидами.

Например, гидроксокомплекс разрушается под действием избытка  углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Na[Al(OH)4]  +  CO2  → Al(OH)3↓  +  NaHCO3

Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:

K[Al(OH)4]  +  CO2  → Al(OH)3  +  KHCO3

По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO2:

      Na[Al(OH)4]  +  SO2  → Al(OH)3↓  +  NaHSO3

   K[Al(OH)4]  +  SO2  → Al(OH)3  +  KHSO3 

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.

Например, с соляной кислотой:

  Na[Al(OH)4]   +  4HCl(избыток)  → NaCl  +  AlCl3  +  4H2O

Правда, под действием небольшого количества (недостатка) сильной кислоты осадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:

Na[Al(OH)4]   +  НCl(недостаток)   → Al(OH)3↓  +  NaCl  +  H2O

Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:

Na[Al(OH)4]  +  HNO3(недостаток)  → Al(OH)3↓  +  NaNO3  +  H2O

Комплекс разрушается при взаимодействии с хлорной водой (водным раствором хлора) Cl2:

2Na[Al(OH)4]  +  Cl2   → 2Al(OH)3↓  +  NaCl  +  NaClO

При этом хлор диспропорционирует.

Также комплекс может прореагировать с избытком хлорида алюминия. При этом выпадает осадок гидроксида алюминия:

AlCl3  +  3Na[Al(OH)4]   → 4Al(OH)3↓  +  3NaCl

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:

Na[Al(OH)4]  →  NaAlO2   +  2H2O↑

K[Al(OH)4]  →  KAlO2   +  2H2O

Гидролиз солей алюминия

Растворимые соли алюминия  и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Al3+ + H2O = AlOH2+ + H+

II ступень: AlOH2+ + H2O = Al(OH)2+ + H+

III ступень: Al(OH)2+ + H2O = Al(OH)3 + H+

Однако  сульфиды, сульфиты, карбонаты алюминия и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Al2(SO4)3  +  6NaHSO3  → 2Al(OH)3  +  6SO2  +  3Na2SO4

2AlBr3  +  3Na2CO3  + 3H2O →  2Al(OH)3↓  +  CO2↑ +  6NaBr

2Al(NO3)3  +  3Na2CO3  +  3H2O →  2Al(OH)3↓  +  6NaNO3  +  3CO2↑

2AlCl3  +  3Na2CO3  +  3H2O → 2Al(OH)3↓  +  6NaCl  +  3CO2↑

Al2(SO4)3  +  3K2CO3  +  3H2O →  2Al(OH)3↓  +  3CO2↑  +  3K2SO4

2AlCl3  +  3Na2S  +  6H2O →  2Al(OH)3  +  3H2S↑  +  6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Алюминаты

Соли, в которых алюминий является кислотным остатком (алюминаты) — образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:

Al2O3 + Na2O → 2NaAlO2

Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.

Например, алюминат натрия мы разделим мысленно на два вещества: оксид алюминия и оксид натрия.

NaAlO2 разбиваем на Na2O и Al2O3

Тогда нам станет очевидно, что алюминаты реагируют с кислотами с образованием солей алюминия:

KAlO2  +  4HCl → KCl  +  AlCl3  +  2H2O

NaAlO2  +  4HCl →  AlCl3  +  NaCl  +  2H2O

NaAlO2  +  4HNO3  → Al(NO3)3  +  NaNO3  +  2H2O

2NaAlO2  +  4H2SO4  → Al2(SO4)3   +  Na2SO4  +  4H2O

Под действием избытка воды алюминаты переходят в комплексные соли:

Читайте также:  В каком файле находятся свойства системы

KAlO2  + H2O   =  K[Al(OH)4]

NaAlO2  +  2H2O  =  Na[Al(OH)4]

Бинарные соединения

Сульфид алюминия под действием  азотной кислоты окисляется до сульфата:

Al2 S3  +  8HNO3  →  Al2(SO4)3  +  8NO2  +  4H2O

либо до серной кислоты (под действием горячей концентрированной кислоты):

Al2 S3  +  30HNO3(конц. гор.)  →  2Al(NO3)3  +  24NO2  +  3H2SO4   +  12H2O

Сульфид алюминия разлагается водой:

Al2S3  + 6H2O →  2Al(OH)3↓    +  3H2S↑

Карбид алюминия также разлагается водой при нагревании на гидроксид алюминия и метан:

Al4C3  +  12H2O → 4Al(OH)3  +  3CH4

Нитрид алюминия разлагается под действием минеральных кислот на соли алюминия и аммония:

AlN  +  4HCl →  AlCl3  +  NH4Cl

Также нитрид алюминия разлагается под действием воды:

AlN  +  3H2O →  Al(OH)3↓  +  NH3 

Источник

Гидроксид алюминия, характеристика, свойства и получение, химические реакции.

Свойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочьюСвойства какого класса соединения проявляет гидроксид алюминия при взаимодействии с щелочью

Гидроксид алюминия – неорганическое вещество, имеет химическую формулу Al(OH)3.

Краткая характеристика гидроксида алюминия

Модификации гидроксида алюминия

Физические свойства гидроксида алюминия

Получение гидроксида алюминия

Химические свойства гидроксида алюминия

Химические реакции гидроксида алюминия

Применение и использование гидроксида алюминия

Краткая характеристика гидроксида алюминия:

Гидроксид алюминия – неорганическое вещество белого цвета.

Химическая формула гидроксида алюминия Al(OH)3.

Плохо растворяется в воде.

Обладает способностью адсорбировать различные вещества.

Модификации гидроксида алюминия:

Известны 4 кристаллические модификации гидроксида алюминия: гиббсит, байерит, дойлеит и нордстрандит.

Гиббсит обозначается γ-формой гидроксида алюминия, а байерит – α-формой гидроксида алюминия.

Гиббсит является наиболее химически стабильной формой гидроксида алюминия.

Физические свойства гидроксида алюминия:

Наименование параметра:Значение:
Химическая формулаAl(OH)3
Синонимы и названия иностранном языке для гидроксида алюминия α-формыpotassium hydroxide (англ.)

aluminum hydroxide α-form (англ.)

байерит (рус.)

Синонимы и названия иностранном языке для гидроксида алюминия γ-формыpotassium hydroxide (англ.)

aluminium hydroxide (англ.)

aluminum hydroxide (англ.)

hydrargillite (англ.)

гиббсит (рус.)

гидраргиллит (рус.)

Тип веществанеорганическое
Внешний вид гидроксида алюминия α-формыбесцветные моноклинные кристаллы
Внешний вид гидроксида алюминия γ-формыбелый моноклинные кристаллы
Цветбелый, бесцветный
Вкус—*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)твердое вещество
Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), кг/м32420
Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), г/см32,42
Температура разложения гидроксида алюминия α-формы, °C150
Температура разложения гидроксида алюминия γ-формы, °C180
Молярная масса, г/моль78,004

* Примечание:

— нет данных.

Получение гидроксида алюминия:

Гидроксид алюминия получают в результате следующих химических реакций:

  1. 1. в результате взаимодействия хлорида алюминия и гидроксида натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl.

При этом гидроксид алюминия выпадает в виде белого студенистого осадка.

Гидроксид алюминия получают также при взаимодействии солей алюминия с водными растворами щёлочи, избегая их избытка.

  1. 2. в результате взаимодействия хлорида алюминия, карбоната натрия и воды:

2AlCl3 + 3Na2CO3 + 3H2O → 2Al(OH)3 + 3CO2 + 6NaCl.

При этом гидроксид алюминия выпадает в виде белого студенистого осадка.

Гидроксид алюминия получают также при взаимодействии водорастворимых солей алюминия с карбонатами щелочных металлов.

Химические свойства гидроксида алюминия. Химические реакции гидроксида алюминия:

Гидроксид алюминия обладает амфотерными свойствами, т. е. обладает как основными, так и кислотными свойствами.

Химические свойства гидроксида алюминия аналогичны свойствам гидроксидов других амфотерных металлов. Поэтому для него характерны следующие химические реакции:

1. реакция гидроксида алюминия с гидроксидом натрия:

Al(OH)3 + NaOH → NaAlO2 + 2H2O (t = 1000 °C),

Al(OH)3 + 3NaOH → Na3[Al(OH)6],

Al(OH)3 + NaOH → Na[Al(OH)4].

В результате реакции образуются в первом случае – алюминат натрия и вода, во втором – гексагидроксоалюминат натрия, в третьем – тетрагидроксоалюминат натрия. В третьем случае в качестве гидроксида натрия используется концентрированный раствор.

2. реакция гидроксида алюминия с гидроксидом калия:

Al(OH)3 + KOH → KAlO2 + 2H2O (t = 1000 °C),

Al(OH)3 + KOH → K[Al(OH)4].

В результате реакции образуются в первом случае – алюминат калия и вода, во втором – тетрагидроксоалюминат калия. Во втором случае в качестве гидроксида калия используется концентрированный раствор.

3. реакция гидроксида алюминия с азотной кислотой:

Al(OH)3 + 3HNO3 → Al(NO3)3 + 3H2O.

В результате реакции образуются нитрат алюминия и вода.

Аналогично проходят реакции гидроксида алюминия и с другими кислотами.

4. реакция гидроксида алюминия с фтороводородом:

Al(OH)3 + 3HF → AlF3 + 3H2O,

6HF + Al(OH)3 → H3[AlF6] + 3H2O.

В результате реакции образуются в первом случае – фторид алюминия и вода, во втором – гексафтороалюминат водорода и вода. При этом фтороводород в первом случае в качестве исходного вещества используется в виде раствора.

5. реакция гидроксида алюминия с бромоводородом:

Al(OH)3 + 3HBr → AlBr3 + 3H2O.

В результате реакции образуются бромид алюминия и вода.

6. реакция гидроксида алюминия с йодоводородом:

Al(OH)3 + 3HI → AlI3 + 3H2O.

В результате реакции образуются йодид алюминия и вода.

7. реакция термического разложения гидроксида алюминия:

Al(OH)3 → AlO(OH) + H2O (t = 200 °C),

2Al(OH)3 → Al2O3 + 3H2O (t = 575 °C).

В результате реакции образуются в первом случае – метагидроксид алюминия и вода, во втором – оксид алюминия и вода.

8. реакция гидроксида алюминия и карбоната натрия:

2Al(OH)3 + Na2CO3 → 2NaAlO2 + CO2 + 3H2O.

В результате реакции образуются алюминат натрия, оксид углерода (IV) и вода.

10. реакция гидроксида алюминия и гидроксида кальция:

Ca(OH)2 + 2Al(OH)3 → Ca[Al(OH)4]2.

В результате реакции образуется тетрагидроксоалюмината кальция.

Применение и использование гидроксида алюминия:

Гидроксид алюминия используется при очистке воды (как адсорбирующее вещество), в медицине, в качестве наполнителя в зубной пасте (как абразивное вещество), пластиках и пластмассах (как антипирен).

Примечание: © Фото //www.pexels.com, //pixabay.com

карта сайта

гидроксид алюминия реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения реакции масса взаимодействие гидроксида

Коэффициент востребованности
7 146

Источник