Какой пар называется насыщенным его свойства

Какой пар называется насыщенным его свойства thumbnail

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Какой пар называется насыщенным его свойства

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

(1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Читайте также:  Какие химические свойства характерны для кислорода

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Какой пар называется насыщенным его свойства

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

Íàñûùåííûé ïàð.

Ïðè èñïàðåíèè îäíîâðåìåííî ñ ïåðåõîäîì ìîëåêóë èç æèäêîñòè â ïàð ïðîèñõîäèò è îáðàòíûé ïðîöåññ. Áåñïîðÿäî÷íî äâèãàÿñü íàä ïîâåðõíîñòüþ æèäêîñòè, ÷àñòü ìîëåêóë, ïîêèíóâøèõ åå, ñíîâà âîçâðàùàåòñÿ â æèäêîñòü.

Åñëè èñïàðåíèå ïðîèñõîäèò â çàêðûòîì ñîñóäå, òî ñíà÷àëà ÷èñëî ìîëåêóë, âûëåòåâøèõ èç æèäêîñòè, áóäåò áîëüøå ÷èñëà ìîëåêóë, âîçâðàòèâøèõñÿ îáðàòíî â æèäêîñòü. Ïîýòîìó ïëîòíîñòü ïàðà â ñîñóäå áóäåò ïîñòåïåííî óâåëè÷èâàòüñÿ. Ñ óâåëè÷åíèåì ïëîòíîñòè ïàðà óâåëè÷èâàåòñÿ è ÷èñëî ìîëåêóë, âîçâðàùàþùèõñÿ â æèäêîñòü. Äîâîëüíî ñêîðî ÷èñëî ìîëåêóë, âûëåòàþùèõ èç æèäêîñòè, ñòàíåò ðàâíûì ÷èñëó ìîëåêóë ïàðà, âîçâðàùàþùèõñÿ îáðàòíî â æèäêîñòü. Ñ ýòîãî ìîìåíòà ÷èñëî ìîëåêóë ïàðà íàä æèäêîñòüþ áóäåò ïîñòîÿííûì. Äëÿ âîäû ïðè êîìíàòíîé òåìïåðàòó­ðå ýòî ÷èñëî ïðèáëèçèòåëüíî ðàâíî 1022 ìîëåêóë çà 1 ñ íà 1 ñì2 ïëîùàäè ïîâåðõíîñòè. Íàñòóïàåò òàê íàçûâàåìîå äèíàìè÷åñêîå ðàâíîâåñèå ìåæäó ïàðîì è æèäêîñòüþ.

Ïàð, íàõîäÿùèéñÿ â äèíàìè÷åñêîì ðàâíîâåñèè ñî ñâîåé æèäêîñòüþ, íàçûâàåòñÿ íàñûùåííûì ïàðîì.

Ýòî îçíà÷àåò, ÷òî â äàííîì îáúåìå ïðè äàííîé òåìïåðàòóðå íå ìîæåò íàõîäèòüñÿ áîëüøåå êîëè÷åñòâî ïàðà.

Ïðè äèíàìè÷åñêîì ðàâíîâåñèè ìàññà æèäêîñòè â çàêðûòîì ñîñóäå íå èçìåíÿåòñÿ, õîòÿ æèäêîñòü ïðîäîëæàåò èñïàðÿòüñÿ. Òî÷íî òàê æå íå èçìåíÿåòñÿ è ìàññà íàñûùåííîãî ïàðà íàä ýòîé æèäêîñòüþ, õîòÿ ïàð ïðîäîëæàåò êîíäåíñèðîâàòüñÿ.

Äàâëåíèå íàñûùåííîãî ïàðà .

Ïðè ñæàòèè íàñûùåííîãî ïàðà, òåìïåðàòóðà êîòîðîãî ïîä­äåðæèâàåòñÿ ïîñòîÿííîé, ðàâíîâåñèå ñíà÷àëà íà÷íåò íàðóøàòüñÿ: ïëîòíîñòü ïàðà âîçðàñòåò, è âñëåäñòâèå ýòîãî èç ãàçà â æèäêîñòü áóäåò ïåðåõîäèòü áîëüøå ìîëåêóë, ÷åì èç æèäêîñòè â ãàç; ïðîäîëæàòüñÿ ýòî áóäåò äî òåõ ïîð, ïîêà êîíöåíòðàöèÿ ïàðà â íîâîì îáúåìå íå ñòàíåò ïðåæíåé, ñîîòâåòñòâóþùåé êîíöåíòðàöèè íàñûùåííîãî ïàðà ïðè äàííîé òåìïåðàòóðå (è ðàâíîâåñèå âîññòà­íîâèòñÿ). Îáúÿñíÿåòñÿ ýòî òåì, ÷òî ÷èñëî ìîëåêóë, ïîêèäàþùèõ æèäêîñòü çà åäèíèöó âðåìåíè, çàâèñèò òîëüêî îò òåìïåðàòóðû.

Èòàê, êîíöåíòðàöèÿ ìîëåêóë íàñûùåííîãî ïàðà ïðè ïîñòîÿííîé òåìïåðàòóðå íå çàâèñèò îò åãî îáúåìà.

Ïîñêîëüêó äàâëåíèå ãàçà ïðîïîðöèîíàëüíî êîíöåíòðàöèè åãî ìîëåêóë, òî è äàâëåíèå íàñûùåííîãî ïàðà íå çàâèñèò îò çàíèìàåìîãî èì îáúåìà. Äàâëåíèå ð0, ïðè êîòîðîì æèäêîñòü íàõîäèò­ñÿ â ðàâíîâåñèè ñî ñâîèì ïàðîì, íàçûâàþò äàâëåíèåì íàñûùåííîãî ïàðà.

Читайте также:  Какое свойство рентгеновского излучения

Ïðè ñæàòèè íàñûùåííîãî ïàðà áîëüøàÿ åãî ÷àñòü ïåðåõîäèò â æèäêîå ñîñòîÿíèå. Æèäêîñòü çàíèìàåò ìåíüøèé îáúåì, ÷åì ïàð òîé æå ìàññû.  ðåçóëüòàòå îáúåì ïàðà ïðè íåèçìåííîé åãî ïëîòíîñòè óìåíüøàåòñÿ.

Çàâèñèìîñòü äàâëåíèÿ íàñûùåííîãî ïàðà îò òåìïåðàòóðû.

Äëÿ èäåàëüíîãî ãàçà ñïðàâåäëèâà ëèíåéíàÿ çàâèñèìîñòü äàâëåíèÿ îò òåìïåðàòóðû ïðè ïîñòîÿííîì îáúåìå. Ïðèìåíèòåëüíî ê íàñûùåííîìó ïàðó ñ äàâëåíèåì ð0 ýòà çàâèñèìîñòü âûðàæàåòñÿ ðàâåíñòâîì:

p0=nkT.

Òàê êàê äàâëåíèå íàñûùåííîãî ïàðà íå çàâèñèò îò îáúåìà, òî, ñëåäîâà­òåëüíî, îíî çàâèñèò òîëüêî îò òåìïåðàòóðû.

Ýêñïåðèìåíòàëüíî îïðåäåëåííàÿ çàâèñèìîñòü p0(T) îòëè÷àåòñÿ îò çàâè­ñèìîñòè (p0=nkT) äëÿ èäåàëüíîãî ãàçà.

Ìîëåêóëÿðíàÿ ôèçèêà Íàñûùåííûå è íåíàñûùåííûå ïàðû

Ñ óâåëè÷åíèåì òåìïåðàòóðû äàâëåíèå íàñûùåííîãî ïàðà ðàñòåò áûñòðåå, ÷åì äàâëåíèå èäåàëüíîãî ãà­çà (ó÷àñòîê êðèâîé À íà ðèñóíêå). Ýòî ñòàíîâèòñÿ îñîáåííî î÷åâèäíûì, åñëè ïðîâåñòè èçîõîðó ÷åðåç òî÷êó A (ïóíêòèðíàÿ ïðÿìàÿ). Ïðîèñõîäèò ýòî ïîòîìó, ÷òî ïðè íàãðåâàíèè æèäêîñòè ÷àñòü åå ïðåâðàùàåòñÿ â ïàð, è ïëîòíîñòü ïàðà ðàñòåò. Ïîýòîìó, ñîãëàñíî ôîðìóëå (p0=nkT), äàâëåíèå íàñû­ùåííîãî ïàðà ðàñòåò íå òîëüêî â ðåçóëüòàòå ïîâûøåíèÿ òåìïåðàòóðû æèäêîñòè, íî è âñëåäñòâèå óâåëè÷åíèÿ êîíöåíòðàöèè ìîëåêóë (ïëîòíîñòè) ïàðà. Ãëàâíîå ðàçëè÷èå â ïîâåäåíèè èäåàëüíîãî ãàçà è íàñûùåííîãî ïàðà çàêëþ÷àåòñÿ â èç­ìåíåíèè ìàññû ïàðà ïðè èçìåíåíèè òåìïåðàòóðû ïðè íåèçìåííîì îáúåìå (â çàêðûòîì ñîñóäå) èëè ïðè èçìåíåíèè îáúåìà ïðè ïîñòîÿííîé òåìïåðàòóðå. Ñ èäåàëüíûì ãàçîì íè÷åãî ïîäîáíîãî ïðîèñõîäèòü íå ìîæåò (ìîëåêóëÿðíî-êèíåòè÷åñêàÿ òåîðèÿ èäåàëüíîãî ãàçà íå ïðåäóñìàòðèâàåò ôàçîâîãî ïåðåõîäà ãàçà â æèäêîñòü).

Ïîñëå èñïàðåíèÿ âñåé æèäêîñòè ïîâåäåíèå ïàðà áóäåò ñîîòâåòñòâîâàòü ïîâåäåíèþ èäåàëüíîãî ãàçà (ó÷àñòîê ÂÑ êðèâîé íà ðèñóíêå âûøå).

Íåíàñûùåííûé ïàð.

Åñëè â ïðîñòðàíñòâå, ñîäåðæàùåì ïàðû êàêîé-ëèáî æèäêîñòè, ìîæåò ïðîèñõîäèòü äàëüíåéøåå èñïàðåíèå ýòîé æèäêîñòè, òî ïàð, íàõîäÿùèéñÿ â ýòîì ïðîñòðàíñòâå, ÿâëÿåòñÿ íåíàñûùåííûì.

Ïàð, íå íàõîäÿùèéñÿ â ñîñòîÿíèè ðàâíîâåñèÿ ñî ñâîåé æèäêîñòüþ, íàçûâàåòñÿ íåíàñûùåííûì.

Íåíàñûùåííûé ïàð ìîæíî ïðîñòûì ñæàòèåì ïðåâðàòèòü â æèäêîñòü. Êàê òîëüêî ýòî ïðåâðàùåíèå íà÷àëîñü, ïàð, íàõîäÿùèéñÿ â ðàâíîâåñèè ñ æèäêîñòüþ, ñòàíîâèòñÿ íàñûùåííûì.

Источник

Выброс пара на Европе в представлении художника

У этого термина существуют и другие значения, см. Пар (значения).

Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества, то есть при температурах ниже критической температуры вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар. Подразумевается, что жидкая или твёрдая фазы могут представлять из себя как индивидуальное вещество так и механическую смесь веществ — влажное вещество[1]. Пары́ прочих веществ оговариваются в явном виде.

Не следует путать оптически однородный и гомогенный пар с туманом — гетерогенной системой, сильно рассеивающей свет.

Различают следующие виды состояний пара химически чистых веществ:

  • Ненасыщенный пар — пар, не достигший динамического равновесия (не термодинамического!) со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.
  • Насыщенный пар — пар, находящийся в динамическом равновесии со своей жидкостью (скорость испарения равна скорости конденсации). Это означает, что при данной температуре в этом объёме не может находиться большее количество пара. Если сжимать пар, находящийся в равновесии с жидкостью под поршнем (при условии, что воздух из сосуда предварительно откачан), то равновесие будет нарушаться. Так как плотность пара в первый момент увеличится, то усилится конденсация (из пара в жидкость начнет переходить большее количество молекул, чем из жидкости в газ). Этот процесс будет продолжаться до тех пор, пока вновь не установятся динамическое равновесие и плотность пара, а следовательно, и концентрация молекул газа не примет прежнее значение.

У разных жидкостей динамическое равновесие с паром наступает при различной плотности пара. Причина этого заключается в различии сил межмолекулярного взаимодействия. В жидкостях, у которых силы межмолекулярного притяжения велики, например у ртути, только наиболее быстрые молекулы, число которых незначительно, могут вылетать из жидкости. Поэтому для таких жидкостей уже при небольшой плотности пара наступает состояние равновесия. У летучих жидкостей с малой силой притяжения молекул, например у эфира, при той же температуре может вылететь за пределы жидкости множество молекул. Поэтому и равновесное состояние наступает только при значительной плотности пара.

Водяной пар[править | править код]

Водяной пар — газообразное состояние воды.

Благодаря своим уникальным свойствам, пар получил широкое распространение в разнообразной деятельности человека.

  • В промышленности является теплоносителем, рабочим телом в паровых машинах и турбинах или очистительным агентом (при паровой очистке).
  • Используется в качестве огнетушащего вещества в системах паротушения.
  • В кулинарии применяется для приготовления блюд «на пару́», например — паровой рыбы.
Читайте также:  Каким свойством обладают односторонние углы

Примечания[править | править код]

Литература[править | править код]

  • Новый политехнический словарь / Под ред. Ишлинский А. Ю.. — М.: Большая Российская энциклопедия, 2003. — С. 671. — ISBN 5-7107-7316-6.
  • Рекомендации по межгосударственной стандартизации РМГ 75-2014. Государственная система обеспечения единства измерений. Измерения влажности веществ. Термины и определения. — М.: Стандартинформ, 2015. — iv + 16 с.

Ссылки[править | править код]

  • Вуколов С. П., Гершун А. Л., Менделеев Д. И. Пар, в физике и химии // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Источник

Изотермы реального газа (пара). Синие кривые — изотермы при температуре ниже критической, зелёные участки на них — метастабильные состояния.

Участок правее точки G — обычный пар.
Участок GC — пересыщенный пар.
Прямая GF — обычный переход пар↔жидкость, динамическое равновесие между жидкостью и насыщенным паром.
Участок FA — перегретая жидкость.
Участок левее точки F — нормальная жидкость.

Пересы́щенный пар — пар, давление которого превышает давление насыщенного пара при данной температуре[1]. Может быть получен путём увеличения давления пара в объёме, свободном от центров конденсации (пылинок, ионов, капелек жидкости малых размеров и т. д.). Другой способ получения — охлаждение насыщенного пара при тех же условиях. В связи с последним способом получения насыщенного пара применительно к нему используется также наименование переохлаждённый пар[2][3][4]. Кроме того, иногда в литературе встречается термин перенасыщенный пар.

Состояние пересыщенного пара является метастабильным, то есть такое состояние пара способно существовать длительное время, однако оно является термодинамически неустойчивым[5]. Так, при появлении каких-либо центров конденсации часть пара конденсируется, давление оставшегося пара падает, и он переходит в устойчивое состояние насыщенного пара над сконденсировшейся жидкостью. Устанавливается динамическое равновесие между жидкой и газообразной фазами.

Также термодинамически неустойчивыми, метастабильными состояниями являются перегретая и переохлаждённая жидкости, неустойчивые для лавинной кристаллизации при температуре ниже равновесной растворимости или температуры плавления, это перенасыщенные растворы, переохлаждённые расплавы. Перегретая жидкость вскипает при образовании центров парообразования.

Метастабильные состояния наблюдаются не только при фазовых переходах газ-жидкость, жидкость-кристалл, но и при других фазовых переходах состояния вещества, например, изменении кристаллической структуры. Так, углерод в виде аллотропической модификации в виде алмаза при нормальных условиях термодинамически неустойчив и находится в метастабильном состоянии, постепенно превращаясь в графит — при этих условиях в устойчивую фазу. Другой пример — превращение белого олова в серое олово при низких температурах.

Неизвестны метастабильные состояния при плавлении кристаллических твёрдых тел.

Применение[править | править код]

Охладить пар и получить в результате пересыщенный пар можно путём быстрого расширения непересыщенного пара[6], в процессе близком к адиабатическому. При быстром расширении существенный теплообмен с окружающей средой произойти не успевает, поэтому в таком процессе пар охлаждается. Этот способ получения пересыщенного пара используется в камере Вильсона — устройстве, предназначенном для визуализации траекторий заряженных частиц[4].

Быстрая заряженная частица[7], влетевшая в камеру, наполненную пересыщенным паром, при столкновениях с молекулами газа вызывает их ионизацию. Образовавшиеся ионы выступают в роли центров (зародышей) конденсации, и пересыщенный пар, находящийся в камере, начинает конденсироваться на них. Постепенно в результате конденсации размер капелек жидкости увеличивается, достигая размеров сопоставимых с длиной волны света и начинают достаточно хорошо рассеивать видимый свет. Эти капельки располагаются цепочкой (треком) вдоль траектории частицы, делают её хорошо видимой и доступной для наблюдения и фотографирования[8]. После регистрации треков частиц в камере Вильсона её необходимо вновь активировать, то есть снова создать в ней пересыщенный пар. Это достигается повышением давления в камере, например, движением поршня на сжатие. При адиабатическом сжатии, сопровождающимся нагревом газа, пересыщенный или насыщенный пар переходят в перегретый пар, при этом крохотные капельки жидкости, взвешенные в газе, быстро испаряются. Последующее адиабатическое расширение газа в камере подготавливает её к повторной регистрации новых треков частиц.

Другой способ получения пересыщенного пара используется в диффузионных камерах, предназначенных для тех же целей, что и камера Вильсона. В этих камерах пересыщение пара происходит в результате непрерывного движения потока пара от относительно горячей крышки камеры к поддерживаемой при пониженной температуре поверхности дна. В пространстве между крышкой и дном формируется область наполненная пересыщенным паром. Вблизи крышки — перегретый пар, вблизи дна — насыщенный пар. В отличие от камеры Вильсона, в диффузионной камере пересыщенный пар существует постоянно, поэтому она может использоваться для наблюдений треков заряженных частиц непрерывно[9].

См. также[править | править код]

  • Испарение
  • Кипение
  • Насыщенный пар
  • Пересыщение

Примечания[править | править код]

Ссылки[править | править код]

  • Перегретая жидкость и пересыщенный пар. — Статья из энциклопедии «Кругосвет».

Источник