Какое вещество является конечным продуктом фотосинтеза у зеленых растений

  • Световая фаза фотосинтеза
    • Циклический транспорт электронов
    • Фотофосфорилирование и окислительное фосфорилирование
  • Темновая фаза фотосинтеза
    • Цикл Кальвина
    • Фотодыхание
    • C4-фотосинтез

Фотосинтез — это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них — каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие — органические.

Выделяют две фазы фотосинтеза — световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы — наиболее распространенного продукта фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2

Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент — бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO2 + H2O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

Читайте также:  Какие продукты развивают рак

6CO2 + 6H2O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) — CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

Источник

    Конечные продукты фотосинтеза [c.238]

    Окисление органических веществ. В результате поглощения СО2 и дальнейших его преобразований в ходе фотосинтеза образуется молекула углевода, которая служит углеродным скелетом для построения всех органических соединений в клетке. Органические вещества, возникшие в процессе фотосинтеза, характеризуются высоким запасом внутренней энергии. Но энергия, аккумулированная в конечных продуктах фотосинтеза — углеводах, жирах, белках,— недоступна для непосредственного использования ее в химических реакциях. Перевод этой потенциальной энергии в активную форму осуществляется в процессе дыхания. Дыхание включает механизмы активации атомоп водорода органического субстрата, освобождения и мобилизации энергии в виде АТФ и генерации различных углеродных скелетов. В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ. Таким образом, фотосинтез и дыхание — это разли ные, но тесно связанные стороны общего энергообмена. [c.609]

Читайте также:  Какие продукты следует исключить при геморрое

    Интересно, что с возрастом увеличивается скорость превращения продукта фиксации СО2 — фосфоглицериновой кислоты — в конечные продукты фотосинтеза. [c.248]

    Фотосинтез углеводов. Зеленые растения синтезируют углеводы нз углекислого газа и воды при участии солнечной энергии и хлорофилла. Конечным продуктом фотосинтеза растений является крахмал. Процесс фотосинтеза и роль в нем хлорофилла, содержащегося в хлорофилловых зернах, исследованы великим русским ученым К. А. Тимирязевым (1843—1920). [c.168]

    В то время как прямая химическая связь между промежуточными продуктами фотосинтеза и субстратами дыхания возможна, но еще не доказана, стимуляция дыхания конечными продуктами фотосинтеза (углеводами) установлена с несомненностью и является вполне естественной, так как известно, что дыхание может стимулироваться и доставляемыми извне сахарами. [c.573]

    Прежде всего флуоресценция конкурирует только с первичной фотохимической реакцией, а не со всем процессом фотосинтеза. Скорость фотосинтеза, измеренная по выделению кислорода или поглощению углекислоты, часто определяется не только эффективностью первичного фотопроцесса, но также и скоростью одной или нескольких связанных с этим процессом темновых каталитических реакций. К их числу относятся реакции, которые превращают первичные фотопродукты в стабильные конечные продукты фотосинтеза. Когда эти завершающие реакции слишком слабы, чтобы идти наравне с первичным фотохимическим процессом (что может иметь место, например, в очень сильном свете, или при низких температурах, или в присутствии некоторых ядов), первичные фотопродукты будут накопляться до определенной концентрации и вновь исчезать при обратных реакциях. Вследствие этого квантовый выход фотосинтеза уменьшится, однако на интенсивности флуоресценции это не отразится, так как первичный фотохимический процесс, конкурирующий с флуоресценцией, продолжается с неизменной скоростью. Этим можно объяснить существование светового насыщения в фотосинтезе, без одновременного возрастания выхода флуоресценции (явление, о котором мы упоминали выше). [c.234]

    Многие углеводы и другие вещества, образованные при фотосинтезе, подвергаются сложным превращениям в процессе дыхания растений. Глюкоза — конечный продукт фотосинтеза — содержит значительное количество солнечной энергии, заключенной в ее молекуле. [c.11]

    Содержание энергии в конечных продуктах фотосинтеза— сахаре и кислороде — известно. Оно равно количеству тепла, образующегося при окислении сахара до углекислоты и воды. Это составляет 112 больших калорий на грамм-атом (атомный вес элемента, выраженный в граммах) углерода. Таково, следовательно, минимальное количество энергии, которое должен дать свет для фотосинтеза. Для того чтобы восстановить молекулу углекислоты до уровня восстановленности углевода, нужно перенести на эту молекулу четыре атома водо- [c.45]

    После рассмотрения сравнительно простых реакций образования отдельных моносахаридов необходимо остановиться на весьма сложном, но исключительно важном процессе фотосинтеза. Это нужно сделать не только потому, что конечные продукты фотосинтеза — углеводы  [c.204]

    Параллельно образованию конечных продуктов фотосинтеза происходит сложная цепь процессов, приводящих к регенерации молекулы акцептора СОг. Последний представляет собой фосфорсодержащее соединение, при образовании которого используется энергия АТФ, образующаяся в процессе фотосинтетического фосфорилирования. [c.174]

    Конечные продукты фотосинтеза, гексозофосфаты, переводятся в крахмал для хранения и в сахарозу для транспортировки в другие части растения кроме того, они превращаются в про-, цессе дыхания в различные строительные блоки, необходимые растению. Все эти процессы мы рассмотрим в следующей главе. [c.137]

    Подавление фотосинтеза при продолжительной и сильной засухе, особенно если она развивается постепенно и не приво-,дит к резкому падению тургора и водного потенциала (что как раз сплошь и рядом наблюдается в полевых условиях), в значительной степени вызывается не только и даже не столько повреждением самих хлоропластов, которые особенно устойчивы к обезвоживанию [92, 449—451], сколько задержкой оттока из. .листьев ассимилятов [98, 452—455], связанной с уменьшением их потребления вследствие задержки ростовых процессов. Накопление ассимилятов — конечных продуктов фотосинтеза — приводит к перекорму листьев и ингибирующе действует на фотосинтез [9, 456], подобно тому как накопление в избыточном количестве продуктов любой химической реакции начинает тормозить эту реакцию. Таким образом, в условиях засухи продукты фотосинтеза потребляются медленнее, чем они вырабатываются. Об этом свидетельствует и повышенное содержание [c.180]

    В итоге за счет полимеризации получается конечный продукт фотосинтеза — гек-соза СбН120б. [c.178]

    Крахмал СвНю05)п — полисахарид. Образуется на свету в листьях растений, является конечным продуктом фотосинтеза. В состав К. входят амилоза и амилопек тин. К. дает синее окрашивание с иодом, подвергается гидролизу. Конечным продуктом гидролиза К. является глюкоза  [c.72]

    Итогом двух фотохимических реакций является создание ассимиляционной силы — НАДФ Н2 и АТФ. Конечные продукты фотосинтеза в этом случае в принципе аналогичны продуктам, образующимся при бескислородном фотосинтезе, за исключением того, что в последнем случае восстановитель находится в форме НАД Н2. [c.289]

    Крахмал (СвНюОб) . Крахмал — запасное питательное вещество растений. Он является конечным продуктом фотосинтеза. Крахмал образуется на свету в зеленых частях растений. Далее он подвергается гидролизу образующиеся при этом более простые углеводы переносятся в остальные части растения, где частично идут на построение клеток и тканей или используются как источник энергии, а частично превращаются снова в крахмал, который откладывается в виде запасного материала в клубнях и других частях растений. Крахмальное зерно неоднородно и состоит из двух веществ амилозы и амилопектина. Амилоза представляет собой длинную цепочку из многих остатков глюкозы (от 100 до 1000), сое- [c.180]

    Чтобы объяснить насыщение, не сопровождаемое изменениями интенсивности флуоресценции, лимитирующий катализатор следует поместить не между одним из двух реагентов (A Og или A HgO) и светочувствительным комплексом, а между первичными и конечными продуктами фотосинтеза. Другими словами, обратные реакции, вызываемые недостатком катализатора, должны быть скорее вторичными, чем первичными. Обратная реакция такого типа (г) была добавлена в механизмы (28.20) и (28.21). Мы можем постулировать, например, что реакция (28.20г) имеет место потому, что превращение первого фотопродукта AH Og в более устойчивое промежуточное соединение требует катализатора Ев (возможно, мутазы), который имеется в ограниченном количестве. Подобный постулат можно сделать и в отношении действия катализатора Ес, который требуется для первой стадии превращения А НО в свободный кислород. Благодаря симметрии между правой и левой сторонами в схемах на фиг. 194 и 195 ограничение в использовании продуктов окисления будет иметь то же влияние на кинетику процесса в целом, как и ограничение в использовании продуктов восстановления. В первом случае вторичная обратная реакция будет ускоряться накоплением первичного окисленного продукта, А НО во втором случае — накоплением первичного восстановленного продукта, AH Og. [c.467]

    Много усилий затрачено для выяснения характера взаимодействия хлорофилла с белками и липидами, однако связь молекулы хлорофилла с этими структурами до сих пор не ясна. Порфирино-вый фрагмент гидрофилен, фитольный гидрофобен. Какой из них осуществляет связь с соответствующей поверхностью белка, до сих пор не установлено. Выяснено только, что структурный белок in vitro проявляет явную склонность к агрегации и к адсорбции на поверхности как молекул липоидов, так и молекул хлорофилла. Ферментные системы, обеспечивающие запасание энергии света в макроэргических связях фосфора АТФ, находятся в тилакоидах у растений и водорослей и в хроматофорах у бактерий. Ассимиляция же СО2 вплоть до образования конечных продуктов фотосинтеза осуществляется с помощью соответствующих ферментов стромы. [c.14]

Читайте также:  Какие продукты взять в израиль

    У некоторых водорослей нет фермента гликолатоксидазы, из-за чего гликолевая кислота становится конечным продуктом фотосинтеза, выделяемым в водоемы. Возможно, это играет большую роль в развитии фитопланктона и бактерий. [c.39]

    Интересно, что у ба ктер ий в процессе уов оен ия СО2 синтезируются, главным образом, не углеводы. В то же время у водорослей и высших растений углеводы выступают в роли основных конечных продуктов фотосинтеза. Такое аильное отличие определяется, по-види-мо му, тем, что у аэробных фотосинтезирующих форм растений углеводы могут легко и. по мере надобност и расходоваться в процессах дыхания. При этом происходит и освобождение энергии и образование в цикле Кребса тех соещинений, которые я1вяяются конечными продуктам)И бактериального фотосинтеза (фоторедукции). [c.238]

    Изучение оттока ассимилятов из хлоропластов в окружающую их среду in vivo и in vitro заставило изменить принятое раньше мнение о том, что все фосфорилированные продукты усвоение СО не диффундируют в цитоплазму, а выполняют лишь функцию промежуточных звеньев, через которые радиоактивный углерод проскакивает в конечные продукты фотосинтеза. [c.266]

    Рассмотрим, почему удобнее выражать эффективность фотосинтеза через квантовый выход или квантовый расход. Этот способ выражения основывается на законе фотохимических эквивалентов Эйнштейна в фотохимической реакции один фотон взаимодействует с одной молекулой. Этот закоп, несомненно, применим для первичных превраш ений в захватывающих центрах. Однако не все первичные электронные переходы ведут к образованию конечных продуктов фотосинтеза, а эти последние, вероятно, сильно отличаются от первичных продуктов. [c.585]

    Образование конечных продуктов фотосинтеза — это путь углерода от 3-ФШ до конечных стабильных продуктов. Сначала Ф1К восстанавливается при участии образовавшихся в световой фазе фотосинтеза молекул АТФ и НАДФ Н в фосфогли[1ериновый альдегид (ФГА), а затем полученные триозы путем рада ферментативных превращений образуют конечные продукты фотосинтеза — углеюды или другие соединения. [c.244]

    Др(угой путь превращения 3-Ф1К, приводящий к образованию различннх органических кислот и аминокислот, изложен ниже (стр. 25 1 ). Молекулы 3-ФГК и 3-ФГА участвуют таким образом в дальнейших многочисленных ферментативных реакциях, приводящих к образовавию конечных продуктов фотосинтеза и к регенврвдии акцептора С02-рибулозодифосфата. Список важнейших ферментов, принямавщих участие в восстановительном цикле углерода, и катализируемые ИМИ реакции приведены на рис.4В и в табя.40. [c.251]

    Из образовавшихся при полном обороте цикла 6 молекул фосфотриоз 5 участвуют в реакциях, приводящих к регенерации акцептора СО . Сюбодной остается одна триоза, которая служит исходным материалом для образования конечных продуктов фотосинтеза. Одна молекула гексозофосфата образуется из 2 фосфотриоз [c.253]

    Раньше считали, что конечный продуктами фотосинтеза являются только углеюды, из которых в дальнейшем путем вторичных превращений строятся все разнообразные и сложные вещества,соо-тавлящие растение. [c.254]

    Экспериментальные работы, выполненные советскими учеными под руководством А. А. Ничиноровича, приводят к важному выводу, что углеводы не являются единственными конечными продуктами фотосинтеза. В зависимости от условий фотосинтеза образуются не только углеводы, но также белки и некоторые другие соединения. [c.66]

    Не останавливаясь подробно на световой фазе фотосинтеза [64], исследованной, главным образом, Кэлвиным и др., следует упомянуть, что важнейшими процессами здесь являются поглощение хлорофиллом квантов света и использование их энергии для синтеза богатых энергий пирофосфатных связей (АТФ, НАДФ-Н2) поглощаемая энергия света используется при разложении воды, кислород которой выделяется в виде О 2 как конечный продукт фотосинтеза, а водород используется для восстановления при участии АТФ и НАДФ-Н фосфоглицериновой кислоты на второй, темновой стадии фотосинтеза. [c.204]

    В основе первичных процессов фотосинтеза ППФ лежит сложная совокупность окислительно-восстановительных реакций переноса электрона между компонентами электрон-транспортной цепи ЭТЦ. Наибольший интерес представляют механизмы трех основных стадий трансформации энергии в ННФ поглощение света фотосинтетическими пигментами и миграция энергии электронного возбуждения на РЦ фотосинтеза первичное разделение зарядов и трансформация энергии в РЦ перенос электрона по ЭТЦ и сопряженные с ним процессы, приводящие к образованию первичных стабильных продуктов (НАДФ и АТФ), используемых в дальнейших темновых реакциях фиксации СО2 и образования конечных продуктов фотосинтеза. [c.280]

    КИСЛОТЫ транспортируются к хлоропластам, локализованным в-клетках обкладки. Здесь СОг высвобождается в высокой кон—центрации и при сравнительно низком содержании кислорода,, благодаря чему хлоропласты этих клеток могут весьма эффективно фиксировать СОг в виде сахаров через цикл Кальвина — Бенсона. С этой точки зрения С4-фиюсация представляется чем-то вроде насоса, поставляющего СОг для Сз-пути. К этому можно добавить, что само положение клеток обкладки создает условия для передачи конечных продуктов фотосинтеза (в частности, сахарозы) непосредственно в ситовидные трубки флоэмы, по которым эти продукты могут затем транспортироваться в другие части растения. [c.135]

    Подсчитаем энергию связей для исходных и конечных продуктов фотосинтеза. В исходных продуктах СО2 и Н2О содержатся две С = 0-связи (190 ккал/моль) и две О—Н-связи (ПО ккал/моль). Итого 190-2+ -f 110-2 = 600 ккал/моль. В конечных продуктах СН2О и [c.44]

    Итогом двух фотохимических реакций у цианобактерий является образование ассимиляционной силы — НАДФ1Н2 и АТФ. Как можно видёть, конечные продукты фотосинтеза цианобактерий в принципе аналогичны продуктам, образующимся при фотосинтезе пурпурных и зеленых бакте рий, за исключением того, что у двух последних, групп йосстановитель образуется в форме НАД-Нг. [c.246]

    З./Фаза регенерации первичного акцептора диоксида углерода и синтеза конечного продукта фотосинтеза. В результате описанных выше реакций при фиксации трех молекул СО2 и образовании шести молекул восстановленных 3-фосфотриоз пять из них используются затем для регенерации рибулозо-5-фосфата, а один — для синтеза глюкозы. 3-ФГА под действием триозофосфатизомеразы изомеризуется в фосфодиокси-ацетон. При участии альдолазы 3-ФГА и фосфодиоксиацетон конденсируются с образованием фруктозо-1,6-дифосфата, у которого отщепляется один фосфат с помощью фруктозо-1,6-дифосфатазы. В дальнейших реакциях, связанных с регенерацией первичного акцептора СО 2, последовательно принимают участие транскетолаза и альдолаза. Транскетолаза катализирует перенос содержащего два углерода гликолевого альдегида от кетозы на альдозу  [c.92]

    IV. Стадия синтеза продуктов. Конечными продуктами фотосинтеза считаются в первую очередь сахара и углеводы. Однако установлено, что в ходе фиксации СОг при фотосинтезе образуются также жиры, жирные кислоты, аминокислоты и органические кислоты. Многие детали соответствующих реакций известны, но для нас они опять-таки большого интереса не представляют. Следует лишь отметить, что в разных условиях, различающихся по освещенности, концентрации СОг, Ог и т. п., по-видимому, происходит образование разных конечных продуктов (рис. 6.7). В последнее время синтез конечных продуктов исследуется очень активно, пoqкoлькy понимание механизма реакций и выяснение благоприятствующих им факторов могут в конечном счете позволить нам создавать необходимые условия для того, чтобы растения по нашему желанию синтезировали больше или меньше сахаров, жиров, аминокислот. [c.92]

    Крахмал нередко называют типичным конечным продуктом фотосинтеза, и он действительно часто накапливается в хлоропластах в течение дня и потребляется ночью (разд. 8.1 и 9.7). Однако количество накапливающегося крахмала варьирует в широких пределах. Некоторые виды растений, например подснежник (Galanthus nivalis), совсем его ие образуют, а листья ряда основных сельскохозяйственных культур, скажем пшени- [c.152]

Источник