Какими свойствами обладают магнитные полюса

Какими свойствами обладают магнитные полюса thumbnail

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!

Магнит

Магнит — тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).

Магнитное поле изображается посредством силовых магнитных линий. Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля — силовые линии.

Картина магнитного поля

Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ.

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.

Здесь q — заряд, v — его скорость в магнитном поле, B — индукция, F — сила Лоренца, с которой поле действует на заряд.

Магнитный поток Ф –  физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток — скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).

Магнитный поток

Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Магнитное поле Земли

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете — Курская и Бразильская магнитные аномалии.

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли.  Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.

Магнитное поле земли

Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов — в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.

Магнитное поле Земли

За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! Курсовая работа международное и национальное право и другие типы работ вы можете заказать по ссылке.

Источник

Постоянные магниты

Что же такое постоянный магнит? Постоянным магнитом называется тело, способное долгое время сохранять намагничивание. В результате многократных исследований, проведенных многочисленных опытов, мы можем сказать, что только три вещества на Земле могут быть постоянными магнитами (рис. 1).

Рис. 1. Постоянные магниты. (Источник)

Только эти три вещества и их сплавы могут быть постоянными магнитами, только они могут намагничиваться и сохранять такое состояние долгое время.

Постоянные магниты использовались очень давно, и в первую очередь это приборы ориентирования в пространстве – первый компас был изобретен в Китае для того, чтобы ориентироваться в пустыне. На сегодняшний день о магнитных стрелках, о постоянных магнитах уже никто не спорит, их используют повсеместно в телефонах и в радиопередатчиках и просто в различных электротехнических изделиях. Они могут быть разными: есть полосовые магниты (рис. 2)

Рис. 2. Полосовой магнит (Источник)

А есть магниты, которые называются дугообразными или подковообразными (рис. 3)

                                    

Рис. 3. Дугообразный магнит (Источник)

Магнитное поле постоянных магнитов

Исследование постоянных магнитов связано исключительно с их взаимодействием. Магнитное поле может создаваться электрическим током и постоянным магнитом, поэтому первое, что было проведено, – это исследования с магнитными стрелками. Если поднести магнит к стрелке, то мы увидим взаимодействие – одноименные полюса будут отталкиваться, а разноименные будут притягиваться. Такое взаимодействие наблюдается со всеми магнитами.

Расположим вдоль полосового магнита маленькие магнитные стрелки (Рис. 4), южный полюс будет взаимодействовать с северным, а северный будет притягивать южный. Магнитные стрелки будут располагаться вдоль линии магнитного поля. Принято считать, что магнитные линии направлены вне постоянного магнита от северного полюса к южному, а внутри магнита от южного полюса к северному. Таким образом, магнитные линии замкнуты точно так же, как и у электрического тока, это концентрические окружности, они замыкаются внутри самого магнита. Получается, что вне магнита магнитное поле направлено от севера к югу, а внутри магнита от юга к северу.

Читайте также:  Какие полезные свойства касторки

Рис. 4. Лини магнитного поля полосового магнита (Источник)

Для того чтобы пронаблюдать форму магнитного поля полосового магнита, форму магнитного поля дугообразного магнита, воспользуемся следующими приборами или деталями. Возьмем прозрачную пластину, железные опилки и проведем эксперимент. Посыплем железными опилками пластину, находящуюся на полосовом магните (рис. 5):

Рис. 5. Форма магнитного поля полосового магнита (Источник)                                                   

Мы видим, что линии магнитного поля выходят из северного полюса и входят в южный полюс, по густоте линий можно судить о полюсах магнита, где линии гуще – там находятся полюса магнита (рис. 6).

Рис. 6. Форма магнитного поля дугообразного магнита (Источник)

Аналогичный опыт проведем с дугообразным магнитом. Мы видим, что  магнитные линии начинаются на северном и заканчиваются на южном полюсе по всему магниту.

Магнитное поле Земли

Нам уже известно, что магнитное поле образуется только вокруг магнитов и электрических токов. Как же нам определить магнитное поле Земли? Любая стрелка, любой компас в магнитном поле Земли строго ориентированы. Раз магнитная стрелка строго ориентируется в пространстве, следовательно, на нее действует магнитное поле, и это магнитное поле Земли. Можно сделать вывод о том, что наша Земля – это большой магнит (Рис. 7) и, соответственно, этот магнит создает в пространстве достаточно мощное магнитное поле. Когда мы смотрим на стрелку магнитного компаса, мы знаем, что красная стрелочка показывает на юг, а синяя на север. Как же располагаются магнитные полюсы Земли? В этом случае необходимо помнить о том, что на северном географическом полюсе Земли располагается южный магнитный полюс и на южном географическом полюсе располагается северный магнитный полюс Земли. Если рассмотреть Землю как тело, находящееся в пространстве, то можно говорить о том, что, когда мы идем по компасу на север, мы придем на южный магнитный полюс, а когда идем на юг – мы попадем на северный магнитный полюс. На экваторе стрелочка компаса будет располагаться практически горизонтально относительно поверхности Земли, и чем ближе мы будем находиться к полюсам, тем вертикальнее будет расположение стрелки. Магнитное поле Земли могло изменяться, были времена, когда полюсы менялись относительно друг друга, то есть южный был там, где северный, и наоборот. По предположению ученых, это было предвестником больших катастроф на Земле. Последние несколько десятков тысячелетий этого не наблюдалось.

Рис. 7. Магнитное поле Земли (Источник)

Магнитные и географические полюса не совпадают. Внутри самой Земли тоже существует магнитное поле, и, как в постоянном магните, оно направлено от южного магнитного полюса к северному.

Откуда же берется магнитное поле в постоянных магнитах? Ответ на этот вопрос дал французский ученый Андре-Мари Ампер. Он высказал идею о том, что магнитное поле постоянных магнитов объясняется элементарными, простейшими токами, протекающими внутри постоянных магнитов. Эти простейшие элементарные токи определенным образом усиливают друг друга и создают магнитное поле. Отрицательно заряженная частица – электрон – движется вокруг ядра атома, это движение можно считать направленным, и, соответственно, вокруг такого движущегося заряда создается магнитное поле. Внутри любого тела количество атомов и электронов просто огромно, соответственно, все эти элементарные токи принимают упорядоченное направление, и мы получаем достаточно значительное магнитное поле. То же самое мы можем сказать о Земле, то есть магнитное поле Земли очень напоминает магнитное поле постоянного магнита. А постоянный магнит – это достаточно яркая характеристика любого проявления магнитного поля.

Заключение

Кроме существования магнитных бурь, существуют еще магнитные аномалии. Они связаны с солнечным магнитным полем. Когда на Солнце происходят достаточно мощные взрывы или выбросы, они происходят не без помощи проявления магнитного поля Солнца. Это эхо достигает Земли и сказывается на ее магнитном поле, в результате мы с вами наблюдаем магнитные бури. Магнитные аномалии связаны с залежами железных руд в Земле, огромные залежи в течение долгого времени намагничиваются магнитным полем Земли, и все тела, находящиеся вокруг, будут испытывать действие магнитного поля со стороны этой аномалии, стрелки компасов будут показывать неправильное направление.

На следующем уроке мы с вами рассмотрим другие явления, связанные с магнитными действиями.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.narod.ru (Источник).
  2. Class-fizika.narod.ru (Источник).
  3. Files.school-collection.edu.ru (Источник).

Домашнее задание

  1. Какой из концов стрелки компаса притягивается к северному полюсу Земли?
  2. В каком месте Земли нельзя верить магнитной стрелке?
  3. О чем говорит густота линий на магните?

Источник

На данном уроке, тема которого: «Магнитное поле постоянного электрического тока», мы узнаем, что такое магнит, как он взаимодействует с другими магнитами, запишем определения магнитного поля и вектора магнитной индукции, а также воспользуемся правилом буравчика для определения направления вектора магнитной индукции.

Введение

Каждый из вас держал в руках магнит и знает его удивительное свойство: он на расстоянии взаимодействует с другим магнитом или с куском железа. Что есть такого в магните, что придает ему эти удивительные свойства? Можно ли самому сделать магнит? Можно, и что для этого нужно – вы узнаете из нашего урока. Забежим наперед: если взять простой железный гвоздь, он не будет обладать магнитными свойствами, но, если обмотать его проволокой и подключить ее к батарейке, мы получим магнит (см. рис. 1).

Рис. 1. Гвоздь, обмотанный проволокой и подключенный к батарейке

Оказывается, чтобы получить магнит, нужен электрический ток – движение электрического заряда. С движением электрического заряда связаны и свойства постоянных магнитов, таких как магнитики на холодильнике. Некого магнитного заряда, подобно электрическому, в природе не существует. Он и не нужен, достаточно движущихся электрических зарядов.

Магнитное поле, вектор магнитной индукции, правило буравчика

Прежде чем исследовать магнитное поле постоянного электрического тока, нужно договориться, как количественно описывать магнитное поле. Для количественного описания магнитных явлений необходимо ввести силовую характеристику магнитного поля. Векторная величина, количественно характеризующая магнитное поле, называется магнитной индукцией. Обозначается она обычно большой латинской буквой B, измеряется в тесла.

Читайте также:  Какими свойствами должен обладать манекен для его

Магнитная индукции  – векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Направление магнитного поля определяется по аналогии с моделью электростатики, в которой поле характеризуется действием на пробный покоящийся заряд. Только здесь в качестве «пробного элемента» используется магнитная стрелка (продолговатый постоянный магнит). Такую стрелку вы видели в компасе. За направление магнитного поля в какой-либо точке принято направление, которое укажет северный полюс N магнитной стрелки после переориентации (см. рис. 2).

Рис. 2. Направление магнитного поля

Полную и наглядную картину магнитного поля можно получить, если построить так называемые силовые линии магнитного поля (см. рис. 3).

Рис. 3. Силовые линии магнитного поля постоянного магнита

Это линии, показывающие направление вектора магнитной индукции (то есть направления полюса N магнитной стрелки) в каждой точке пространства. С помощью магнитной стрелки, таким образом, можно получить картину силовых линии различных магнитных полей. Вот, например, картина силовых линий магнитного поля постоянного магнита (см. рис. 4).

Рис. 4. Силовые линии магнитного поля постоянного магнита

Магнитное поле существует в каждой точке, но линии мы изображаем на некотором расстоянии друг от друга. Это просто способ изображения магнитного поля, аналогично мы поступали с напряженностью электрического поля (см. рис. 5).

Рис. 5. Линии напряженности электрического поля

Чем более плотно нарисованы линии – тем больше модуль магнитной индукции в данной области пространства. Как видите (см. рис. 4), силовые линии выходят из северного полюса магнита и входят в южный полюс. Внутри магнита силовые линии поля также продолжаются. В отличие от силовых линий электрического поля, которые начинаются на положительных зарядах и заканчиваются на отрицательных, силовые линии магнитного поля замкнутые (см. рис. 6).

Рис. 6. Силовые линии магнитного поля замкнуты

Поле, силовые линии которого замкнуты, называется вихревым векторным полем. Электростатическое поле не является вихревым, оно потенциальное. Принципиальное различие вихревых и потенциальных полей в том, что работа потенциального поля на любом замкнутом пути равна нулю, для вихревого поля это не так. Земля тоже является огромным магнитом, она обладает магнитным полем, которое мы обнаруживаем с помощью стрелки компаса. Подробнее о магнитном поле Земли рассказано в ответвлении.

Наша планета Земля является большим магнитом, полюса которого находятся неподалеку от пересечения поверхности с осью вращения. Географически это Южный и Северный полюса. Именно поэтому стрелка в компасе, которая тоже является магнитом, взаимодействует с Землей. Она ориентируется таким образом, что один конец указывает на Северный полюс, а другой – на Южный (см. рис. 7).

Рис.7. Стрелка в компасе взаимодействует с Землей

Тот, который указывает на Северный полюс Земли, обозначили N, что означает North – в переводе с английского «Север». А тот, который указывает на Южный полюс Земли – S, что означает South – в переводе с английского «Юг». Так как притягиваются разноименные полюса магнитов, то северный полюс стрелки указывает на Южный магнитный полюс Земли (см. рис. 8).

Рис. 8. Взаимодействие компаса и магнитных полюсов Земли

Получается, что Южный магнитный полюс находится у Северного географического. И наоборот, Северный магнитный находится у Южного географического полюса Земли.

Теперь, познакомившись с моделью магнитного поля, исследуем поле проводника с постоянным током. Еще в XIX веке датский ученый Эрстед обнаружил, что магнитная стрелка взаимодействует с проводником, по которому течет электрический ток (см. рис. 9).

Рис. 9. Взаимодействие магнитной стрелки с проводником

Практика показывает, что в магнитном поле прямолинейного проводника с током магнитная стрелка в каждой точке будет устанавливаться по касательной к некоторой окружности. Плоскость этой окружности перпендикулярна проводнику с током, а ее центр лежит на оси проводника (см. рис. 10).

Рис. 10. Расположение магнитной стрелки в магнитном поле прямого проводника

Если изменить направление протекания тока по проводнику, то магнитная стрелка в каждой точке развернется в противоположную сторону (см. рис. 11).

Рис. 11. При изменении направления протекания электрического тока

То есть направление магнитного поля зависит от направления протекания тока по проводнику. Описать эту зависимость можно при помощи простого экспериментально установленного метода – правила буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения его ручки совпадает с направлением магнитного поля, создаваемого этим проводником (см. рис. 12).

Рис.12. Направление магнитного поля

Итак, магнитное поле проводника с током направлено в каждой точке по касательной к окружности, лежащей в плоскости, перпендикулярной проводнику. Центр окружности совпадает с осью проводника. Направление вектора магнитного поля в каждой точке связано с направлением тока в проводнике правилом буравчика. Опытным путем, при изменении силы тока и расстояния от проводника, установлено, что модуль вектора магнитной индукции пропорционален току  и обратно пропорционален расстоянию от проводника . Модуль вектора магнитной индукции поля, создаваемого бесконечным проводником с током, равен:

где  – коэффициент пропорциональности, который нередко встречается в магнетизме. Называется магнитной проницаемостью вакуума. Численно равен:

 

Для магнитных полей, как и для электрических, справедлив принцип суперпозиции. Магнитные поля, создаваемые разными источниками в одной точке пространства, складываются (см. рис. 13).

Рис. 13. Магнитные поля разных источников складываются

Суммарная силовая характеристика такого поля будет векторной суммой силовых характеристик полей каждого из источников. Величину магнитной индукции поля, создаваемого током в определенной точке, можно увеличить, если согнуть проводник в окружность. Это будет понятно, если рассмотреть магнитные поля небольших сегментов такого витка провода в точке, находящейся внутри этого витка. Например, в центре.

Сегмент, обозначенный , по правилу буравчика создает в ней поле, направленное вверх (см. рис. 14).

Рис. 14. Магнитное поле сегментов

Сегмент  аналогично создает в этой точке магнитное поле, направленное туда же. Аналогично и для других сегментов. Тогда суммарная силовая характеристика (то есть вектор магнитной индукции B) в этой точке будет суперпозицией силовых характеристик магнитных полей всех малых сегментов в этой и будет направлено вверх (см. рис. 15).

Рис. 15. Суммарная силовая характеристика в центре витка

Для произвольного витка, не обязательно в форме окружности, например для квадратной рамки (см. рис. 16), величина вектора  внутри витка будет, естественно, зависеть от формы, размеров витка и силы тока в нем, но направление вектора магнитной индукции всегда будет определяться таким же способом (как суперпозиция полей, создаваемых малыми сегментами).

Читайте также:  Какие два психических свойства личности называет автор укажите любые две

Рис. 16. Магнитное поле сегментов квадратной рамки

Мы подробно описали определение направления поля внутри витка, но в общем случае его можно находить гораздо проще, по немного измененному правилу буравчика:

если вращать рукоятку буравчика в том направлении, куда течет ток в витке, то острие буравчика укажет направление вектора магнитной индукции внутри витка (см. рис. 17).

Рис. 17. Направление вектора магнитной индукции в витке

То есть теперь вращение рукоятки соответствует направлению тока, а перемещение буравчика – направлению поля. А не наоборот, как было в случае с прямым проводником. Если длинный проводник, по которому течет ток, свернуть в пружину, то это устройство будет представлять из себя множество витков. Магнитные поля каждого витка катушки по принципу суперпозиции будут складываться. Таким образом, поле, создаваемое катушкой в некоторой точке, будет суммой полей, создаваемых каждым из витков в этой точке. Картину силовых линий поля такой катушки вы видите на рис. 18.

Рис. 18. Силовые линии катушки

Такое устройство называется катушкой, соленоидом или электромагнитом. Нетрудно заметить, что магнитные свойства катушки будут такими же, как у постоянного магнита (см. рис. 19).

Рис. 19. Магнитные свойства катушки и постоянного магнита

Одна сторона катушки (которая на рисунке сверху) играет роль северного полюса магнита, а другая сторона – южного полюса. Такое устройство широко применяется в технике, потому что им можно управлять: оно становится магнитом только при включении тока в катушке. Обратите внимание, что линии магнитного поля внутри катушки почти параллельны, их плотность велика. Поле внутри соленоида очень сильное и однородное. Поле снаружи катушки неоднородно, оно намного слабее поля внутри и направлено в противоположную сторону. Направление магнитного поля внутри катушки определяется по правилу буравчика как для поля внутри одного витка. За направление вращения рукоятки мы принимаем направление тока, который течет по катушке, а перемещение буравчика указывает направление магнитного поля внутри нее (см. рис. 20).

Рис. 20. Правило буравчика для катушки

Если поместить виток с током в магнитное поле, он будет переориентироваться, подобно магнитной стрелке. Момент силы, вызывающий поворот, связан c модулем вектора магнитной индукции в данной точке, площадью витка и силой тока в нем следующим соотношением:

Теперь нам становится понятно, откуда берутся магнитные свойства постоянного магнита: электрон, движущийся в атоме по замкнутой траектории, подобен витку с током, и, как и виток, он обладает магнитным полем. А, как мы увидели на примере катушки, множество витков с током, упорядоченных определенным образом, обладают сильным магнитным полем.

Поле, создаваемое постоянными магнитами, – результат движения зарядов внутри них. И эти заряды – электроны в атомах (см. рис. 21).

Рис. 21. Движение электронов в атомах

Объясним механизм его возникновения на качественном уровне. Как известно, электроны в атоме находятся в движении. Так вот, каждый электрон, в каждом атоме создает свое магнитное поле, таким образом, получается огромное количество магнитов размером с атом. У большинства веществ эти магниты и их магнитные поля ориентированы хаотично. Поэтому суммарное магнитное поле, создаваемое телом, равно нулю. Но есть вещества, у которых магнитные поля, создаваемые отдельными электронами, ориентированы одинаково (см. рис. 22).

Рис. 22. Магнитные поля ориентированы одинаково

Поэтому магнитные поля, создаваемые каждым электроном, складываются. В итоге тело из такого вещества обладает магнитным полем и является постоянным магнитом. Во внешнем магнитном поле отдельные атомы или группы атомов, обладающие, как мы выяснили, собственным магнитным полем, поворачиваются как стрелка компаса (см. рис. 23).

Рис. 23. Поворачивание атомов во внешнем магнитном поле

Если они до этого не были ориентированы в одну сторону и не образовывали сильное суммарное магнитное поле, то после упорядочивания элементарных магнитов их магнитные поля сложатся. И если после действия внешнего поля упорядоченность сохранится, вещество останется магнитом. Описанный процесс называется намагничиванием.

Задания

Обозначьте полюса источника тока, питающего соленоид при указанном на рис. 24 взаимодействии. Порассуждаем: соленоид, в котором течет постоянный ток, ведет себя подобно магниту.

Рис. 24. Источник тока

По рис. 24 видно, что магнитная стрелка ориентирована южным полюсом в сторону соленоида. Одноименные полюса магнитов отталкиваются друг от друга, а разноименные притягиваются. Отсюда следует, что левый полюс самого соленоида – северный (см. рис. 25).

Рис. 25. Левый полюс соленоида северный

Линии магнитной индукции выходят из северного полюса и входят в южный. Значит, поле внутри соленоида направлено влево (см. рис. 26).

Рис. 26. Поле внутри соленоида направлено влево

Ну а направление поля внутри соленоида определяется по правилу буравчика. Мы знаем, что поле направлено влево – значит, представим, что буравчик вкручивается в этом направлении. Тогда его рукоятка будет указывать направление тока в соленоиде – справа налево (см. рис. 27).

Рис. 27. Направление тока в соленоиде

Направление тока определяется направлением перемещения положительного заряда. А положительный заряд перемещается от точки с большим потенциалом (положительный полюс источника) в точку с меньшим (отрицательный полюс источника). Следовательно, полюс источника, расположенный справа, – положительный, а слева – отрицательный (см. рис. 28).

Рис. 28. Определение полюсов источника

Задача 2

Рамка площадью 400  помещена в однородное магнитное поле индукцией 0,1 Тл так, что нормаль рамки перпендикулярна линиям индукции. При какой силе тока на рамку будет действовать вращающий момент 20  (см. рис. 29)?

Рис. 29. Рисунок к задаче 2

Порассуждаем: момент силы, вызывающий поворот, связан c модулем вектора магнитной индукции в данной точке, площадью витка и силой тока в нем следующим соотношением:

В нашем случае все необходимые данные имеются. Остается выразить искомую силу тока и рассчитать ответ:

Задача решена.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
  2. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – М.: Просвещение, 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет портал «Гипермаркет знаний» (Источник)
  2. Интернет портал «Единая коллекция ЦОР» (Источник)

Домашнее задание

  1. Дайте определение вектора магнитной индукции.
  2. Каковы источники магнитного поля?
  3. Какую величину обозначают  и чему численно она равна?
  4. Каким правилом можно описать зависимость направления магнитного поля от направления протекания тока по проводнику?

Источник