Какими свойствами обладают электромагнитные волны

Какими свойствами обладают электромагнитные волны thumbnail

Какими свойствами обладают электромагнитные волны

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

На всех стадиях сборочно-монтажных операций выполняются операции контроля качества печатных плат: входной контроль, операционный контроль, выходной контроль. По степени охвата большинство операций относятся к сплошному контролю, т.е. проверке подвергаются все модули. Обнаруженные дефекты фиксируются в сопроводительной документации на узел для последующего устранения, для статистического учета и с целью выявления и устранения причин их появления. Протоколирование дефектов в соответствии с программой ведет и автоматическое оборудование, подробнее можно узнать на сайте https://a-contract.ru.

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

Какими свойствами обладают электромагнитные волны

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Какими свойствами обладают электромагнитные волны

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

  • преломление;
  • отражение;
  • поглощение;
  • интерференция.

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Какими свойствами обладают электромагнитные волны

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Какими свойствами обладают электромагнитные волны

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.
Читайте также:  Какими свойствами обладают товары и услуги

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

Какими свойствами обладают электромагнитные волны

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·106÷10-2до 10-9÷ 10-14.

Какими свойствами обладают электромагнитные волны

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и бактерии.
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Какими свойствами обладают электромагнитные волны

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Источник

Свойства электромагнитных волн

Подробности

Просмотров: 460

«Физика — 11 класс»

Современные радиотехнические устройства позволяют провести очень наглядные опыты по наблюдению свойств электромагнитных волн.
При этом лучше всего пользоваться волнами сантиметрового диапазона.
Эти волны излучаются специальным генератором сверхвысокой частоты (СВЧ).
Электрические колебания генератора модулируют звуковой частотой.
Принятый сигнал после детектирования подается на громкоговоритель.

Электромагнитные волны излучаются рупорной антенной в направлении оси рупора.
Приемная антенна в виде такого же рупора улавливает волны, которые распространяются вдоль его оси.

Какими свойствами обладают электромагнитные волны

Поглощение электромагнитных волн

Располагают рупоры друг против друга и, добившись хорошей слышимости звука в громкоговорителе, помещают между рупорами различные диэлектрические тела.
При этом замечают уменьшение громкости.

Отражение электромагнитных волн

Если диэлектрик заменить металлической пластиной, то звук перестанет быть слышимым.
Волны не достигают приемника вследствие отражения.
Отражение происходит под углом, равным углу падения, как и в случае световых и механических волн.
Чтобы убедиться в этом, рупоры располагают под одинаковыми углами к большому металлическому листу.
Звук исчезнет, если убрать лист или повернуть его-

Какими свойствами обладают электромагнитные волны

Преломление электромагнитных волн

Электромагнитные волны изменяют свое направление (преломляются) на границе диэлектрика.
Это можно обнаружить с помощью большой треугольной призмы из парафина.
Рупоры располагают под углом друг к другу, как и при демонстрации отражения.

Какими свойствами обладают электромагнитные волны

Металлический лист заменяют затем призмой.
Убирая призму или поворачивая ее, наблюдают исчезновение звука.

Поперечность электромагнитных волн

Электромагнитные волны являются поперечными.
Это означает, что векторы Какими свойствами обладают электромагнитные волны и Какими свойствами обладают электромагнитные волны электромагнитного поля волны перпендикулярны направлению ее распространения.
При этом векторы Какими свойствами обладают электромагнитные волны и Какими свойствами обладают электромагнитные волны взаимно перепендикулярны.
Волны с определенным направлением колебаний этих векторов называются поляризованными.

.

Приемный рупор с детектором принимает только поляризованную в определенном направлении волну.
Это можно обнаружить, повернув передающий или приемный рупор на 90°.
Звук при этом исчезает.

Читайте также:  Какие химические свойства белков

Какими свойствами обладают электромагнитные волны

Поляризацию наблюдают, помещая между генератором и приемником решетку из параллельных металлических стержней.
Решетку располагают так, чтобы стержни были горизонтальными или вертикальными.
При одном из этих положений, когда электрический вектор параллелен стержням, в них возбуждаются токи, в результате чего решетка отражает волны, подобно сплошной металлической пластине.
Когда же вектор Какими свойствами обладают электромагнитные волны перпендикулярен стержням, токи в них не возбуждаются и электромагнитная волна проходит через решетку.

Итак,
электромагнитные волны обладают следующими свойствами.
Они поглощаются, отражаются, испытывают преломление, поляризуются.
Последнее свойство свидетельствует о поперечности этих волн.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные волны. Физика, учебник для 11 класса — Класс!ная физика

Что такое электромагнитная волна —
Экспериментальное обнаружение электромагнитных волн —
Плотность потока электромагнитного излучения —
Изобретение радио А. С. Поповым. Принципы радиосвязи —
Модуляция и детектирование —
Свойства электромагнитных волн —
Распространение радиоволн —
Радиолокация —
Понятие о телевидении. Развитие средств связи —
Краткие итоги главы

Источник

Недостаточно обладать мудростью, нужно уметь пользоваться ею.

Информационный блок Электромагнитные волны и их свойства

Какими свойствами обладают электромагнитные волныОбщие свойства электромагнитных волн

-Поглощение диэлектрическими
телами

-Отражение (металлами)

-Преломление на границе
диэлектрика

-Поперечность

-Скорость в вакууме (воздухе)
300000 км/с

-Давление на
вещество

-Скорость в
среде убывает

-Интерференция,
дифракция, поляризация


Поглощение
электромагнитных волн.
Располагают рупоры друг против друга и, добившись хорошей слышимости звука
в громкоговорителе, помещают между рупорами различные диэлектрические тела. При
этом замечают уменьшение громкости.

Отражение
электромагнитных волн.
Если диэлектрик заменить металлической пластиной, то звук перестанет быть
слышимым. Волны не достигают приемника вследствие отражения. Отражение
происходит под углом, равным углу падения, как и в случае световых и
механических волн. Чтобы убедиться в этом, рупоры располагают под одинаковыми
углами к большому металлическому листу. Звук исчезнет, если убрать
лист или повернуть его.

Преломление
электромагнитных волн.
Электромагнитные волны изменяют свое направление (преломляются) на границе
диэлектрика. Это можно обнаружить с помощью большой треугольной призмы из
парафина. Рупоры располагают под углом друг к другу, как и при демонстрации
отражения. Металлический лист заменяют затем призмой. Убирая призму
или поворачивая ее, наблюдают исчезновение звука.

Поперечность
электромагнитных волн.
Электромагнитные волны являются поперечными. Это означает, что векторы Е и В электромагнитного поля волны
перпендикулярны направлению ее распространения. При этом векторы Е и В взаимно перпендикулярны. Волны с
определенным направлением колебаний этих векторов называются поляризованными.  изображена такая

Какими свойствами обладают электромагнитные волны

поляризованная волна.

Приемный рупор с детектором принимает только
поляризованную в определенном направлении волну. Это можно обнаружить, повернув
передающий или приемный рупор на 90°. Звук при этом исчезает.

Поляризацию наблюдают, помещая между генератором и
приемником решетку из параллельных металлических стержней. Решетку
располагают так, чтобы стержни были горизонтальными или вертикальными. При
одном из этих положений, когда электрический вектор параллелен стержням, в них
возбуждаются токи, в результате чего решетка отражает волны, подобно сплошной
металлической пластине. Когда же вектор перпендикулярен стержням, токи в
них не возбуждаются и электромагнитная волна проходит через решетку.

Какими свойствами обладают электромагнитные волны


Интерференция волн.
Направим излучающий рупор на два металлических листа, расположенные рядом друг с другом под углом, чуть меньшим 180°. Передвигая 

приемный рупор вокруг листов, мы обнаружим последовательное усиление и ослабление мощности 

принимаемой волны.

Дифракция волн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя, как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.


Электромагнитные волны обладают следующими свойствами. Они поглощаются, отражаются, испытывают преломление, поляризуются. Последнее свойство свидетельствует о поперечности этих волн.

Прочитать можно на сайте Физика.ru https://www.fizika.ru/kniga/index.php?mode=proverjalka&theme=11&id=11090 

Источник

Электромагнитные волныпредставляют собой распространение электромагнитных полей в пространстве и времени.

Рассмотрим основные свойства электромагнитных волн.
1. Электромагнитные волны излучаются колеблющимися зарядами.
Наличие ускорения — главное условие излучения электромагнитных волн.
2. Такие волны могут распространяться не только в газах, жидкостях и твердых средах, но и в вакууме.
3. Электромагнитная волна является поперечной.

4. Скорость электромагнитных волн в вакууме с=300000 км/с. Распространение электромагнитной волны в диэлектрике представляет собой непрерывное поглощение и переизлучение электромагнитной энергии электронами и ионами вещества, совершающими вынужденные колебания в переменном электрическом поле волны. При этом в диэлектрике происходит уменьшение скорости волны.
5. При переходе из одной среды в другую частота волны не изменяется.
6. Электромагнитные волны могут поглощаться веществом. Это обусловлено резонансным поглощением энергии заряженными частицами вещества. Если собственная частота колебаний частиц диэлектрика сильно отличается от частоты электромагнитной волны, поглощение происходит слабо, и среда становится прозрачной для электромагнитной волны.

Читайте также:  В ручьях можно хорошо рассмотреть дно какое свойства

7. Попадая на границу раздела двух сред, часть волны отражается, а часть проходит в другую среду, преломляясь. Если второй средой является металл, то прошедшая во вторую среду волна быстро затухает, а большая часть энергии (особенно у низкочастотных колебаний) отражается в первую среду (металлы являются непрозрачными для электромагнитных волн).

Для электромагнитных волн, так же, как и для механических, справедливы свойства дифракции, интерференции, поляризации и другие.

Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл (см. (95.8)) и wм, (см. (130.3)) электрического и магнитного полей:

Учитывая выражение (162.4), получим, что плотности энергии электрического и магнитного полей в каждый момент времени одинаковы, т. е. wэл = wм. Поэтому

Умножив плотность энергии w на скорость v распространения волны в среде (см. (162.3)), получим модуль плотности потока энергии:

Tax как векторы Е и Н взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора [ЕН] совпада­ет с направлением переноса энергии, а модуль этого вектора равен ЕН.Вектор плотности потока электромагнитной энергии называется вектором Умова — Пойнтинга:

Вектор S направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, компоненты которого входят в состав компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

{displaystyle mathbf {S} ={frac {c}{4pi }}[mathbf {E} times mathbf {H} ]} где E и H — векторы напряжённости электрического и магнитного полей соответственно.

1884 году[3] идеи Умова были разработаны Д. Г. Пойнтингом применительно к электромагнитной энергии. Потому вектор плотности потока электромагнитной энергии называется вектором Пойнтинга.

Световая волна. Интерференция световых волн. Когерентные волны. Условия максимума и минимума интерференции. Способы наблюдения интерференции света. Расчет интерференционной картины от двух линейных источников света.

Под световой волной понимают электрическую составляющую электромагнитной волны, длина волны которой в вакууме l0 лежит в пределах 400 – 700 нм. Такие волны воспринимает человеческий глаз. Уравнение плоской световой волны можно представить в виде

E = Acos(wt – kx + a0) , (43)

где А – принятое обозначение амплитуды светового вектора Е, a0 – начальная фаза (фаза при t = 0, x = 0).

В среде с показателем преломления n фазовая скорость световой волны равна u = c/n, а длина волны l = l0/n . (44)

Интенсивность световой волны, как следует из (41), определяется средним значением вектора Пойнтинга I = < S >, и можно показать, что

I ~ A2 , (45)

т.е. пропорциональна квадрату амплитуды световой волны.

Интерференцией называется явление перераспределения энергии в пространстве при наложении когерентных волн.

Когерентными называются волны одного направления, с одинаковыми плоскостями колебаний светового вектора, одинаковой частотой и с постоянной во времени разностью фаз.

Когерентные волны можно получить, разделяя одну световую волну на две с помощью отражения и преломления света.

Условия наблюдения максимумов и минимумов интерференции определяются разностью фаз складываемых колебаний.

(46)

Разность фаз интерферирующих волн связана с оптической разностью хода

D = l2 – l1 ,

где l – оптическая дина пути световой волны. При этом l = S×n, где S – геометрическая длина пути световой волны в однородной среде с показателем преломления n. Кроме того, при нахождении l надо учитывать, что при отражении от оптически более плотной среды световая волна меняет фазу на p. В этом случае к оптической длине пути надо прибавить (или отнять) l0/2 – добавочная разность хода, учитывающая смену фазы на p при отражении 1-й волны от более плотной среды (пленки)..

Для получения интерференционной картины необходимы когерентные световые пучки, для формирования которых применяются различные искусственные приемы. До появления лазеров во всех приборах для наблюдения интерференции света когерентные пучки получали, как отмечалось выше, разделением и последующим сведением световых лучей, исходящих из одного и того же источника. Практически это можно осуществить с помощью экранов со щелями, зеркал и преломляющих тел (призм). Обсудим некоторые из таких способов.

Метод Юнга

Источником света служит ярко освещенная щель S, от которой свет падает на две равноудаленные щели s1, и s2, параллельные щели S (рис. 4.5).

Рис. 4.5. Метод Юнга наблюдения интерференции

Таким образом, щели S1 и S2 являются источниками когерентных пучков света. Когерентность, естественно, имеет место при условии, что расстояние между щелями и меньше радиуса когерентности света, выходящего из щели . Интерференционная картина может наблюдаться на экране Э, расположенном на некотором расстоянии от щелей.

Источник