Какие свойства стали придает вольфрам

Какие свойства стали придает вольфрам thumbnail

Подробности

Категория: В

Просмотров: 5571

ВОЛЬФРАМОВАЯ СТАЛЬ, железо-вольфрамовый сплав, содержащий некоторое количество С, Si и Мn; иногда в состав вольфрамовой стали входит и Сr. Признаком, по которому вольфрамовая сталь отличается от ферровольфрама, является способность ее обрабатываться в горячем состоянии. Максимальное содержание W в принятых на практике сортах вольфрамовой стали — 20%. Диаграмма равновесия системы железо-вольфрам была изучена японцами Хонда и Мураками и позднее американцем Сайксом (W. Р. Sykes). Согласно этим исследованиям, диаграмма равновесия Fe-W имеет вид, показанный на фиг. 1.

Как видно из этой диаграммы, температура плавления сплавов железо-вольфрам (линия АВС) в интервале химического состава от 0% W до 49% W остается почти постоянной и мало чем отличается от температуры плавления (линия АСЕ) чистого железа. При дальнейшем увеличении содержания W в стали температура плавления сплава резко возрастает. Сплавы железо-вольфрам, содержащие 33% W, при закалке обнаруживают под микроскопом только крупные полиэдры твердого раствора вольфрама в железе (рис. 1).

При медленном же охлаждении сплавов, содержащих ≤33% W, наблюдается вторая фаза (рис. 2). Эта вторая фаза отвечает составу Fe3W2; содержание W в ней равно 68,7%. Кривая равновесия Fe-W, приведенная на фиг. 1, показывает, что если сплав с содержанием 20% W закалить при температуре в 1400°, т. е. выше линии BG — кривой, определяющей предел насыщения α-Fe вольфрамом (твердый раствор W в кубической решетке α-Fe), то микроструктура такого сплава будет (аналогично рис. 1) состоять лишь из одних полиэдрических зерен твердого раствора; если же такой сплав (20% W; 80% Fe) выдержать достаточно долго при 1300—1350° и затем закалить при этой температуре, т. е. ниже линии BG, то на фоне крупных полиэдров твердого раствора должны быть видны частички выделившегося из раствора химических соединения Fe3W2. Сплав с 10% W, в случае закалки при температуре выше 950°, имеет полиэдрическую структуру твердого раствора вольфрама в железе; при закалке того же сплава при температуре 900° и ниже на фоне полиэдров твердого раствора д. б. видны частички выделившегося из раствора Fe3W2. Если сплав, содержащий 15% W, закалить при 1300° или сплав с содержанием 20% W закалить при температуре свыше 1400°, то структура таких сплавов будет состоять из одних крупных полиэдров; если же нагреть эти закаленные сплавы до температуры 700—800°, т. е. ниже линии BG, и при этих температурах выдержать закаленные сплавы достаточно долгое время, то из пересыщенного твердого раствора выделятся частицы Fe3W2 в виде небольших включений на фоне полиэдров; твердость сплавов при этом заметно возрастет. На помещаемых ниже кривых изменения твердости видно, как значительно увеличивается твердость вольфрамовых сплавов при последующем нагреве их после закалки при 1500°.

Явление старения (aging) вольфрамовых сплавов аналогично старению дюралюминия с той только разницей, что в дюралюминии повышение твердости наблюдается при вылеживании закаленного образца при температуре от 15 до 100°, повышение же твердости вольфрамовых сплавов требует выдержки их при более высокой температуре.

Табл. 1., показывающая изменения твердости железо-вольфрамовых сплавов, закаленных в воде при 1500° и выдержанных затем в течение длительного времени при 700° и 800°, отчетливо подтверждает это явление.

Изменение твердости сплавов находится в полном соответствии с микроструктурой. Микроструктура сплава (20% W и 80% Fe) после закалки в воде при 1500° представляет однородный твердый раствор — единую фазу без каких-либо следов второй фазы — химического соединения Fe3W2.

Микроструктура такого сплава состоит из светлых полиэдров твердого раствора W в железе. При выдержке такого сплава в течение двух часов при 700° (рис. 3), из сплава начинают выделяться частички Fe3W2 в чрезвычайно дисперсном состоянии; дисперсность столь велика, что даже при увеличении в 1000 раз эти частички почти незаметны для глаза. Как и для дюралюминия, такой структуре отвечает максимальная твердость.

При дальнейшей выдержке при той же температуре до 20 час. (рис. 4) размер выделившихся частичек Fe3W2 возрастает, в соответствии с чем твердость сплава несколько падает (с 330 до 312). При более высокой температуре процесс выделения частичек Fe3W2 из раствора идет с большей быстротой; выделившиеся частицы Fe3W2 имеют больший размер, в соответствии с чем твердость сплава понижается. Так, на микроструктуре сплава с 20% W, закаленного при 1500°, после выдержки при 800° в течение 20 час. (рис. 5), ясно видны отдельные частицы Fe3W2. В соответствии с этим сплав имеет твердость всего лишь 260.

При длительной выдержке после закалки при более высокой температуре (фиг. 1) твердость сплава д. б. ниже по двум причинам: 1) размер выделившихся частичек Fe3W2 возрастает, 2) абсолютное количество выделяющихся из раствора частиц Fe3W2 при более высоких температурах будет меньше, так как при более высоких температурах в твердом растворе удержится большее количество вольфрама (см. линию BG, фиг. 1). Рис. 6 представляет микроструктуру того же сплава, выдержанного после закалки в течение 1 ч. при 1000°, и ясно иллюстрирует вышеприведенные соображения.

Естественно, что такой сплав, где и количество выделившихся частиц Fe3W2 заметно меньше и размер отдельных частиц достаточно велик, должен обладать незначительной твердостью. Найденное при испытании этого сплава число твердости 180 хорошо согласуется с приведенной здесь микроструктурой.

На фиг. 2 представлено изменение твердости при нагреве сплавов с 15, 20 и 25% W в течение 1 ч. при разных температурах.

На фиг. 3 приведена диаграмма изменения твердости вольфрамовых сплавов при отпуске при 700° в течение разного времени.

Эти диаграммы, резко иллюстрирующие явление вторичной твердости, находятся в полном соответствии с основной диаграммой равновесия системы железо-вольфрам, разъясняющей природу этого явления. В присутствии углерода W вступает с ним в соединение WC. При нормальных условиях карбид вольфрама с цементитом образует двойной карбид, диссоциирующий при температуре выше AС1 (индексы: AC1, Ar1, Аr2, Аr3, Ar4 — см. Железо) на простые карбиды, которые вновь соединяются в двойные карбиды при нагреве, не слишком высоком. При высоких температурах карбид вольфрама, реагируя с железом, может дать Fe3W2 и цементит. Это образование и растворение Fe3W2 в аустените вызывает при охлаждении понижение критических точек вольфрамовой стали, на которое впервые обратил внимание Свинден (Th. Swinden). Он наблюдал, что для вольфрамовой стали, с разным содержанием углерода существует такая определенная температура Тk, что предварительный нагрев до температур ниже Tk не отражается на положении критической точки Аr1, тогда как нагрев вольфрамовой стали выше этой температуры вызывает заметное понижение точки Аr1, причем оно будет тем значительнее, чем больше содержание W в стали. Эта определенная температура Тk называется понижающей температурой. На приводимой диаграмме (фиг. 4) представлена кривая понижающей температуры (LT), полученная Свинденом для стали, содержащей 3% W.

Читайте также:  Какими свойствами обладает имидж

Марс (Mars) дает следующее объяснение явлению, изученному Свинденом. Он предполагает, что понижающая температура есть температура кристаллизации аустенита, при которой исчезают последние зародыши отдельных фаз, растворяющихся в аустените. Перекристаллизация аустенита, содержащего посторонние примеси, происходит значительно медленнее, и потому при охлаждении вольфрамовой стали, нагретой выше понижающей температуры, критическая точка Ar1 понижается. Чем больше будет содержание W в стали, тем выше надо будет нагреть сталь, чтобы перевести весь W в растворенное состояние, т. е. тем выше будет понижающая температура и тем значительнее понизится критическая точка Аr1.

Микроструктуру вольфрамовой стали изучали японцы Хонда и Мураками, а также Гилле (Guillet). Согласно этим исследованиям, вольфрамовую сталь можно разбить по структуре на две группы (фиг. 5): сталь перлитную и сталь с двойными карбидами.

К первой группе будет относиться сталь с невысоким содержанием W и С; при повышении содержания того или другого того вольфрамовая сталь принимает структуру второго типа. Излом вольфрамовой стали заметно мельче, чем излом углеродистой стали. Структура вольфрамовой стали становится тем мельче, чем больше содержание W и С в стали.

Значительный удельный вec W (19,3) должен отразиться на удельном весе вольфрамовой стали, как это видно из табл. 2.

Теплопроводность вольфрамовой стали крайне незначительна; поэтому нагревать ее перед ковкой следует осторожно: быстрый нагрев вольфрамовой стали может вызвать образование трещин. Теоретически температура ковки вольфрамовой стали не должна отличаться от температуры ковки углеродистой стали, однако, благодаря значительной твердости вольфрамовой стали в горячем состоянии, практически ковку вольфрамовой стали производят при температуре, которая значительно выше температуры ковки углеродистой стали.

Производство вольфрамовой стали. Вольфрамовая сталь производится главным обр. в электрических печах или в тиглях — в аппаратах, обеспечивающих, с одной стороны, придание стали лучших физических свойств, а с другой — меньший процент угара вольфрама при плавке. На некоторых заводах плавят вольфрамовую сталь и в кислых мартеновских печах небольшого тоннажа. Ферро-вольфрам представляет собой сплав, сравнительно мало угорающий; небольшой процент угара при плавке вольфрамовой стали обусловливается: а) незначительной склонностью вольфрама к окислению; б) большим удельным весом Fe-W, благодаря чему вольфрам не задерживается в шлаке. Техника приготовления вольфрамовой стали не представляет тех затруднений, с какими связано приготовление хромистых сталей. Fe-W вводят в печь небольшими порциями каждый раз после расплавления предыдущей порции: при поспешной даче Fe-W легко наварить на поде печи «козел» вольфрама, расплавление которого значительно затягивает продолжительность плавки. Чтобы по возможности излишне не удлинять плавку при приготовлении стали с высоким содержанием вольфрама, начинают присадку Fe-W (с 80% W) в не вполне раскисленную ванну, ведя параллельно с присадкой его и раскисление стали; незначительное увеличение угара вольфрама при таком методе плавки компенсируется экономией, связанной с сокращением продолжительности плавки. Если количество вводимого в печь Fe-W невелико, то в целях понижения процента угара вольфрама желательно вводить Fe-W после раскисления стали. С целью еще большего сокращения продолжительности плавки некоторые заводы пытались вводить Fe-W с самого начала плавки непосредственно в шихту. Такой метод работы применим лишь в случае загрузки в печь очень чистых шихтовых материалов с незначительным содержанием фосфора. Как правило, вводить Fe-W в печь вместе с шихтой не следует: уменьшение стоимости выплавки не компенсирует понижения качества ответственных вольфрамовых сталей. Вольфрам удобнее вводить в стали в виде ферро-вольфрама (в кусках): температура плавления его ниже  температуры плавления металлического вольфрама, имеющего вид порошка; в случае употребления последнего W вводится следующим способом (применявшимся автором на заводе «Электросталь»): металлический порошок вольфрама отвешивают в бракованные железные котелки и в упакованном виде бросают в печь; благодаря большому удельному весу вольфрама котелок успевает потонуть в стали раньше, чем железо котелка расплавится, и вольфрамовый порошок благодаря этому не теряется в шлаке.

Применение вольфрамовой стали.

I. Сталь с содержанием W от 1 до 2,5% применяется: а) в качестве специальной инструментальной стали для резцов и других инструментов, в которых важно сохранить режущую способность острия, б) для клапанов газомоторов, в) для волочильных досок. Сталь этого типа, содержащую около 1% С и от 1,25 до 2% W, рекомендуется подвергать следующей термической обработке: 1) медленный нагрев до 800°, 2) закалка в воде, 3) отпуск при 200—260°.

II. Сталь с содержанием 1,1—1,3% С и 3—6% W применяется в качестве инструмента для окончательной отделки твердых изделий, например, для нарезки резьбы в ружейных стволах. Для сообщения этой стали лучших режущих свойств иногда к ней прибавляют небольшое количество хрома. Булленс (D. Bullens) рекомендует для отделки твердых изделий сталь следующего состава (табл. 3):

Эти стали перед закалкой д. б. нагреты до 930°; нагрев д. б. постепенный, а затем при указанной температуре сталь должна быть выдержана, чтобы мог закончиться процесс растворения карбидов вольфрама; температура, рекомендуемая для закалки специальной стали, колеблется в пределах 840—900°. Если обработку вести в две стадии (растворение карбидов и закалка в собственном смысле слова), то для первой стадии нагрев может быть доведен до 930°, а для второй — до 840—875°.

Читайте также:  Какие есть механические свойства пород

III. Вольфрам увеличивает не только временное сопротивление, но и сопротивление выгоранию стали от действия пороховых газов; поэтому вольфрамовые стали находят применение как для ружейных стволов (0,5—0,55% С; 1,6—1,9% W), так и для труб гаубичных пушек (0,6—0,7% С; 1—3% W).

IV. Гадфильд отмечает, что сталь с низким содержанием вольфрама (0,75%) применяется для пружин (хотя для этого целесообразнее применять кремнистую сталь).

V. Большое распространение получила вольфрамовая сталь для изготовления постоянных магнитов. Нормальный состав магнитной стали: 0,6—0,75% С; 5—6% W. Марс, изучавший влияние W на магнитные свойства стали, получил следующий результат (табл. 4):

Булленс рекомендует вольфрамовую сталь с 0,7% Сu 5—6% W закаливать без отпуска в воде при 845—860°. Иногда к магнитной вольфрамовой стали прибавляют некоторое количество хрома; такую сталь приходится закаливать не в воде, а в масле. В настоящее время наряду с магнитной вольфрамовой стали применяют хромовую сталь для постоянных магнитов; лучшей же магнитной сталью является кобальтовая сталь.

VI. Высокоуглеродистая вольфрамовая сталь применяется для изготовления волочильных досок. Для волочения мягкой проволоки применяют доски с содержанием С 1,9—2,2% и W в пределах 1,5—3%. Термическая обработка досок сводится к закалке очков (дыр) в воде при 760—790°; отжигается эта сталь путем медленного охлаждения, начиная с 760—790°. Доски средней твердости для протяжки прутков диаметром более 3 мм обычно готовятся из хромовольфрамовой стали следующего состава: 1,9% С; 4% W; 2% Сr; 0,4% Мn. Для протяжки же проволоки очень тонкого сечения применяется хромовольфрамовая сталь с высоким содержанием W; обычный состав ее: 1,9% С; 11,5—12% W; 1,9% Сr; 1,9%—2,0% Мn. Такая сталь закаливается при 820° в масле с последующим отпуском при 160—220°. Обрабатывается она крайне трудно; для отжига ее охлаждают крайне медленно после выдержки при 580—600°.

VII. Значительное распространение получила вольфрамовая сталь для изготовления быстрорежущей стали.

VIII. Сталь для матриц — следующего состава: 0,6—0,65% С; 8,0—9,0% W.

Источник: Мартенс. Техническая энциклопедия. Том 4 — 1928 г.

Источник

Вольфрам, получение анализ свойства минералыСталь, где основным легирующим элементом является  вольфрам.   Применяется с начала 20 в. Различают вольфрамовую сталь, легированную только вольфрамом, и сложнолегированную вольфрамовая сталь, в которую, помимо вольфрама, добавляют хром, никель, марганец и др. элементы. В стали вольфрам находится частично в твердом растворе и образует стойкие труднорастворимые карбиды, вследствие чего уменьшается ее склонность к росту зерна при нагреве до высоких т-р и необратимой отпускной хрупкости, повышаются прокаливаемость и, следовательно, прочность и вязкость.

Во многих вольфрамовая сталь, легированных хромом, образуются метастабильные карбиды типа (W, Сr, Fe)23 С6, легко растворяющиеся при нагреве, что значительно понижает критическую скорость закалки, улучшает прокаливаемость. Вольфрамовая сталь выплавляют в электрических (индукционных) печах, в которых хорошее электродинамическое перемешивание стали обеспечивает полное растворение вольфрама. Сложнолегированные вольфрамовые стали используют в качестве конструкционных сталей, инструментальных сталей, а также сталей с особыми физ. и хим. св-вами, напр. жаропрочных сталей. Конструкционные В. с.  характеризуются малой склонностью к перегреву , мелкозернистостью, повышенной прочностью и пластичностью, они не склонны к отпускной хрупкости. Мех. св-ва этих сталей улучшают закалкой и высокотемпературным отпуском.

Из конструкционных вольфрамовая сталь марок 18Х2Н4ВА и 15ХНГ2ВА (используют также в цементованном состоянии) изготовляют коленчатые валы, зубчатые колеса и др. детали машин, эксплуатируемые при больших скоростях, ударных нагрузках и вибрации, из стали марки 38ХНЗВА диски  роторов,  детали  компрессоров и редукторов, эксплуатируемые при т-ре до 400° С. Сталь, из к-рой изготовляют тяжелонагруженные детали, напр. коленчатые валы, наряду с вольфрамом легируют молибденом. Инструментальные стали перлитного класса  отличаются  износостойкостью.   

Деформация   инструмента из этой стали при закалке   уменьшается.    Инструментальные стали карбидного класса характеризуются повышенной теплостойкостью вследствие    образования    вторичного  высоколегированного мартенсита с высокой твердостью и стабильностью, а также выпадения высокопрочных дисперсных карбидов. Заготовки инструментальных В. с. перед мех. обработкой отжигают на зернистый перлит при т-ре 780— 800° С для смягчения и лучшей обрабатываемости.   Инструментальные вольфрамовая сталь марок ХВСГ и ХВ4 подвергают закалке от т-ры 820—840° С в подогретом до т-ры 60—80° С масле и отпуску при т-ре 160—180° С. Твердость стали после такой термообработки 66—67 НRС.

Из инструментальных вольфрамовых сталей изготовляют режущий инструмент, штампы и валки для холодной и горячей прокатки. Жаропрочные стали мартенситного и аустенитного классов, легированные вольфрамом , применяют для изготовления труб паропроводов, дисков и лопаток турбин. Термообработка этих сталей состоит из закалки в воде от т-ры 1000— 1150° С и последующего отпуска или старения при т-ре 600—800° С в течение 2—3 ч. Марки, хим. состав и мех. св-ва конструкционной В.

Лит.: Геллер O. А. Инструментальные стали.; Химия и технология молибдена и вольфрама

Вы читаете, статья на тему вольфрамовая сталь

Источник

вольфрамВольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

структура вольфрамаКристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

Читайте также:  Какие физические свойства выделяют у веществ

СВОЙСТВА

кольцо из вольфрамаВольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

вольфрамКларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

вольфрамВольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

продукция из вольфрамаТугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

Молекулярный вес183,84 г/моль
Происхождение названия лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»)
IMA статусподтвержден в 2011 году

КЛАССИФИКАЦИЯ

Nickel-Strunz (10-ое издание)1.AE.05
Dana (7-ое издание)1.1.38.1

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минераласерый
Цвет чертыбелый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнет
Твердость (шкала Мооса)7,5
Прочностьковкий
Изломзазубренный
Плотность (измеренная)19.3 г/см3
Радиоактивность (GRapi)
Магнетизмпарамагнетик

ОПТИЧЕСКИЕ СВОЙСТВА

Типизотропный
Плеохроизмне плеохроирует
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группаm3m (4/m 3 2/m) — гексаоктаэдральный
Пространственная группаIm3m
Сингониякубическая

mineralpro.ru  

13.07.2016  

Источник