Какие свойства атомов переодически изменяются

Какие свойства атомов переодически изменяются thumbnail

Свойства атомов изменяются периодически. В периоде слева направо наблюдается ослабление металлических свойств простых веществ. Так, в третьем периоде после очень активного металла натрия находится умеренно активный магний. Их оксиды проявляют основные свойства. Далее идут металл алюминий с амфотерными свойствами и кремний, имеющий лишь слабые признаки металличности. Простые вещества следующих элементов периода: кремний, фосфор и сера — являются неметаллами; в этом ряду прослеживается усиление неметаллических свойств. Период заканчивается благородным газом аргоном, а следующий за ним элемент — активный металл калий — начинает четвертый период. Металлические свойства простых веществ обусловлены наличием большого числа свободных орбиталей, энергетически доступных для заселения электронами. Таких орбиталей становится все больше у тяжелых элементов (5—7-й периоды). Поэтому в группах металлич- ность усиливается при переходе сверху вниз.

К периодическим свойствам относится и размер (радиус) атома. Внешняя граница атома расплывчата, так как плотность электронных облаков плавно убывает по мере удаления от ядра. Данные о радиусах атомов получают из определения расстояний между ними в молекулах и кристаллических структурах. Проведены также расчеты на основе уравнений квантовой механики. На рис. 1.8 показано изменение атомных радиусов в зависимости от заряда ядра. От водорода к гелию радиус несколько увеличивается, а затем резко увеличивается у лития. Это объясняется появлением второго энергетического уровня. Во втором периоде от лития к неону по мере увеличения заряда ядра радиусы уменьшаются. В то же время увеличение числа электронов на данном энергетическом уровне ведет к усилению их взаимного отталкивания. Поэтому к концу периода снижение радиуса замедляется. При переходе от неона к натрию — первому элементу третьего периода — радиус снова резко возрастает, а потом постепенно уменьшается до аргона. После этого снова происходит резкое увеличение радиуса у калия. Получается характерная периодическая пилообразная кривая. Каждый участок кривой от щелочного металла до благородного газа характеризует изменение радиуса в периоде: мы наблюдаем уменьшение радиуса при переходе слева направо. Интересно также выяснить характер изменения радиусов в группах элементов. Для этого надо провести линию через элементы одной группы. По положению максимумов у щелочных металлов видно, что радиусы атомов в группе сверху вниз увеличиваются. Это связано с ростом числа электронных оболочек.

От размера атома зависят многие другие как физические, так и химические свойства. При определенной затрате энергии атом может потерять один или несколько электронов. Чем больше радиус внешних облаков, тем легче атом теряет электрон. При этом он превращается в положительно заряженный ион.

Периодичность изменения атомных радиусов

Рис. 1.8. Периодичность изменения атомных радиусов

Ион — одно из возможных состояний атома, в котором он имеет электрический заряд вследствие потери или приобретения электронов.

Способность атома переходить в положительно заряженный ион характеризуется энергией ионизации (ЕИ). Это минимальная энергия, необходимая для отрыва внешнего электрона от атома в газообразном состоянии:

Какие свойства атомов переодически изменяются

Образовавшийся положительный ион тоже может терять электроны, становясь двухзарядным, трехзарядным и т. д. Энергия ионизации при этом сильно возрастает.

Энергия ионизации атомов увеличивается в периодах при переходе слева направо и уменьшается в группах при переходе сверху вниз, т. е. противоположно изменению радиуса.

Многие (но не все) атомы способны присоединять дополнительный электрон, превращаясь в отрицательно заряженный ион А-. Эта способность характеризуется энергией сродства к электрону (?ср), т. е. энергией, выделяющейся при присоединении электрона к атому, находящемуся в газообразном состоянии:

Какие свойства атомов переодически изменяются

Изменение энергии сродства к электрону в периоде более сложно, так как у элементов НА и VIIIA групп сродство к электрону отсутствует. Приближенно можно считать, что энергия сродства к электрону (подобно энергии ионизации) увеличивается в периодах слева направо (до VII группы включительно) и уменьшается в группах сверху вниз.

Ионы с положительными и отрицательными зарядами притягиваются друг к другу, что ведет к разнообразным превращениям. Наиболее простой случай — это образование ионных связей, т. е. объединение ионов в вещество под действием электростатического притяжения. Тогда возникает ионная кристаллическая структура, характерная для хлорида натрия NaCl (пищевая соль) и множества других солей.

Возможность появления положительных и отрицательных зарядов на разных атомах в сложных веществах зависит от их свойства, называемого электр о отрицательностью. Это свойство — производное от энергии ионизации и энергии сродства к электрону. В качестве меры электроотрицательности атома можно взять сумму абсолютных значений Еср и Ен. В соответствии с характером изменения этих величин наибольшая электроотрицательность у фтора, а наименьшая — у франция. На практике применяют значения относительной электроотрицательности (%), принимая за единицу электроотрицательность лития.

Относительная электроотрицательность — это характеристика атома, показывающая его способность приобретать отрицательный заряд в сложном веществе.

Химические элементы первых трех периодов имеют следующие значения относительной электроотрицательности:

Какие свойства атомов переодически изменяются

Электроотрицательность большинства неметаллов больше двух, а большинства металлов меньше двух.

Из двух атомов, связанных между собой, атом с большей электроотрицательностью заряжается отрицательно, с меньшей электроотрицательностью — положительно. Величина возникающих зарядов зависит от разности электроотрицательностей (Д^).

При Д% > 2 атомы образуют не молекулы, а кристаллические структуры ионного типа — структуры, построенные из ионов. Большие разности электроотрицательностей характерны для солей, так как в них атомы металлов связаны с наиболее электроотрицательными атомами галогенов (бинарные соли) или кислорода (соли кислородных кислот).

Вопросы и задания

  • 1. Как вы думаете, чем обусловлено явление периодичности?
  • 2. Объясните тенденцию изменения радиусов атомов элементов: а) одного периода; б) одной группы.
  • 3. Охарактеризуйте понятие «энергия ионизации».
  • 4. Дайте определение понятия «энергия сродства к электрону».
  • 5. Как зависят металлические и неметаллические свойства атомов от значений энергии ионизации и энергии сродства к электрону?
Читайте также:  В каких приборах используются свойства электронно дырочного перехода

Источник

При рассмотрении свойств элементов отметим, что причиной их периодического изменения является периодичность структур электронных слоев и оболочек атомов. Важнейшими периодически изменяющимися свойствами свободных атомов являются радиусы атомов, энергия ионизации и сродство к электрону.

            РАДИУСЫ АТОМОВ И ИОНОВ. Изолированный атом не имеет строго определенного размера из-за волновых свойств электрона. Следовательно, понятие размера атома, его радиуса весьма условно. Тем не менее, часто необходимо знать хотя бы приближенные значения радиусов атомов. Для их оценки используют так называемые ЭФФЕКТИВНЫЕ РАДИУСЫ. Это радиусы, которые имеют атомы, входя в состав реальных простых веществ. Их обозначают .

Эффективные атомные радиусы элементов в периодах уменьшаются от щелочного металла к галогену. Объяснить это можно тем, что с увеличением заряда ядра увеличивается сила кулоновского притяжения электронов к ядру, которая преобладает над силами взаимного отталкивания электронов. Происходит сжатие электронной оболочки. Наиболее заметное уменьшение эффективного радиуса наблюдается для s- и р – элементов. В рядах d и f – элементов радиусы изменяются более плавно вследствие заполнения электронами второй и третьей снаружи оболочки.

            В главных подгруппах с увеличение главного квантового числа происходит заметное увеличение радиуса атома. Для элементов побочных подгрупп изменение радиусов незначительное, а при переходе от пятого к шестому периоду эффективные радиусы атомов практически не изменяются. Это является следствием сжатия электронной оболочки в семействе лантоноидов, которое и компенсирует увеличение объема атома.

            При отрыве электрона с внешнего уровня атома происходит уменьшение эффективного радиуса, а в случае образования отрицательного иона – увеличение. Ионные радиусы, как и атомные, являются периодической функцией заряда ядра.

            ЭНЕРГИЯ ИОНИЗАЦИИ. Мы уже знаем, что отдельный атом в основном состоянии представляет собой наиболее устойчивую систему из данных частиц. Поэтому для любого изменения структуры этой системы требуется затрата энергии. Величина энергии, которая затрачивается для отрыва одного электрона от нейтрального атома в основном состоянии, называется энергией ионизации данного атома (), или ионизационным потенциалом. Эту энергию обычно относят к одному молю атомов и выражают в килоджоулях на моль или электроновольтах (эВ).

            Энергия ионизации – важная характеристика атома. Она позволяет судить о том, насколько прочно связаны электроны в атоме.

            В группе при увеличении порядкового номера элемента наблюдается уменьшение энергии ионизации. Оно связано с увеличением радиуса атома.

            В периодах энергия ионизации атомов слева направо возрастает. Это вызвано сжатием электронной оболочки вследствие увеличения эффективного заряда ядра. Наименьшей является прочность связи

 — электрона с ядром (при . Поэтому атомы щелочных металлов имеют самые низкие значения энергии ионизации. Причем, с увеличениям n их энергия ионизации понижается вследствие экранирующего действия внутренних электронов. Эта закономерность имеется и у р- элементов (за исключением ). Атомы благородных газов имеют максимальную энергию ионизации при данном .

            Отрыв второго, третьего и т.д. электронов требует гораздо большей затраты энергии. Это связано с ростом заряда образующегося положительного иона. Энергия ионизации, например, для  и соответственно равна 5,14эВ и 47,3эВ.

            Сравнение электронных структур атомов и значений энергии ионизации позволяет заключить, что ее максимальными значениями обладают атомы с завершенными внешним  слоями  и , т.е. атомы благородных элементов.

            СРОДСТВО К ЭЛЕКТРОНУ. В ряде случаев важно оценить способность атома присоединять электроны. Эта способность характеризуется значением энергии, которая затрачивается или выделяется при присоединении электрона к нейтральному атому в основном состоянии и называется сродством атома к электрону (). Способность атома присоединять электроны тем больше, чем больше величина его сродства к электрону. По сравнению с энергией ионизации значение сродства к электрону невелико, поскольку избыточный электрон приводит к усилению межэлектронного отталкивания и повышению энергии атомной орбитали.

            Минимальное сродство к электрону наблюдается у атомов, имеющих завершенные — и  — оболочки, мало оно и у атомов с конфигурацией  (азот, фосфор, мышьяк).

            Наибольшим сродством к электрону обладают атомы элементов подгрупп VII А, имеющие конфигурацию . Как правило, у элементов третьего периода сродство к электрону больше, чем у элементов второго периода.

Таким образом, в большинстве случаев сродство к электрону в ряду атомов изменяется в той же последовательности, что и их энергия ионизации: растет с ростом числа электронов на внешнем уровне атомов данного периода и уменьшается с ростом радиусов атомов в пределах данной группы или подгруппы.

            Практическое использование всех рассмотренных характеристик ограничено тем, что они относятся к изолированным атомам. В случае неизолированных атомов часто используют эмпирическую величину, называемую ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬЮ (ЭО). Ее ввел Л.Полинг как свойство связанного атома притягивать электроны, точнее – электронную плотность. Электронная плотность смещается к тому из атомов, который имеет большую электроотрицательность. Электроотрицательность измеряется в тех же единицах, что и энергия ионизации. Она зависит от многих факторов: электронной структуры, наличия вакантных орбиталей, числа и вида соседних атомов и т.д. Поэтому для данного атома электроотрицательность не может быть постоянной. На практике используют усредненную величину.

            В каждом периоде электроотрицательность растет по мере накопления электронов в атомах, т.е. слева направо. В каждой группе она убывает по мере возрастания радиусов атомов. Наибольшей электроотрицательностью обладают самые маленькие атомы с семью внешними электронами (атомы галогенов малых периодов). Наименьшая электроотрицательность у самых больших атомов с одним внешним электроном (атомы щелочных металлов больших периодов).

Читайте также:  Какие свойства имеет глицерин

            Однако в этих закономерностях много исключений. Таким образом, применяя эту величину, не следует ее не переоценивать.

            НЕПЕРИОДИЧЕСКИЕ СВОЙСТВА. Это свойства элементов, которые с порядковым номером изменяются монотонно. К их числу относятся, например, удельная теплоемкость простых веществ, частоты линий рентгеновского спектра и др.

            В заключение подчеркнем, что в периодической зависимости от заряда ядра находятся не только свойства отдельных атомов. Периодически зависят от заряда ядра атома многие свойства аналогичных по составу и структуре веществ: температуры кипения и плавления, энергии диссоциации, магнитные свойства и др.

Источник

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

В формулировке Дмитрия Ивановича Менделеева периодический закон звучал так: «Свойства элементов, формы и свойства образуемых ими соединений находятся в периодической зависимости от величины их атомной массы.» Периодическое изменение свойств элементов Менделеев связывал с атомной массой. Понимание периодичности изменения многих свойств позволило Дмитрию Ивановичу определить и описать свойства веществ, образованных еще не открытыми химическими элементами, предсказать природные рудные источники и даже места их залегания.

Какие свойства атомов переодически изменяются

Более поздние исследования показали, что свойства атомаов и их соединений зависят в первую очередь от электронного строения атома. А электронное строение определяется свойствами атомного ядра. В частности, зарядом ядра атома.

Поэтому современная формулировка периодического закона звучит так:

«Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов«.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Периоды – это горизонтальные ряды элементов с одинаковым количеством заполняемых электронных уровней. Номер периода обозначает число энергетических уровней в атоме элемента. Все периоды (кроме первого) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. 

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.

В периодах слева направо возрастает число электронов на внешнем уровне.

Как следствие,

В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.

В первом периоде имеются два элемента – водород и гелий. При этом водород условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Как и щелочные металлы, водород является восстановителем. Отдавая один электрон, водород образует однозарядный катион H+. Как и галогены, водород – неметалл, образует двухатомную молекулу H2 и может проявлять окислительные свойства при взаимодействии с активными металлами:

2Na + H2  →  2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементыа с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до гадолиния Hg), а после первого переходного элемента лантана La следуют14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номерому.

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппыглавные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:

В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.

В главных подгруппах сверху вниз увеличивается устойчивость соединений элементов в низшей степени окисления.

В побочных подгруппах наоборот: сверху вниз металлические свойства ослабевают и увеличивается устойчивость соединений с высшей степенью окисления.

В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все жлементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-XIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Читайте также:  Какими свойствами обладает хлорная вода

Из строения атомов и электронных оболочек вытекают следующие закономерности:

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус – понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

Мы говорим про орбитальный радиус изолированного атома .

Орбитальный радиус – это  теоретически рассчитанное расстояние от ядра до максимального скопления  наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.

Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.

Например, в ряду атомов: F – Cl – Br – I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается.

Какие свойства атомов переодически изменяются

Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.

Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:

Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.

Например, в ряду Li – Be – B – C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается.

Какие свойства атомов переодически изменяются

В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.

Какие свойства атомов переодически изменяются

Пример. Выберите три элемента, которые в Периодической системе находятся в одной группе, и расположите эти элементы в порядке увеличения радиуса  атома

  1) O         2) Se       3) F       4) S       5) Na

 Решение: 

В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

Ответ: 142

Пример. Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома

  1) K         2) Li       3) F       4) B       5) Na

Решение: 

В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243

Рассмотрим закономерности изменения радиусов ионов: катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Например, радиус иона Na+ меньше радиуса атома натрия Na:

Какие свойства атомов переодически изменяются

Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

 Радиус аниона больше радиуса соответствующего атома.

Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Например, радиус иона Cl– больше радиуса атома хлора Cl.

Изоэлектронные ионы – это  ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Например: частицы Na+ и F‒ содержат по 10 электронов. Но заряд ядра натрия +11, а у фтора только +9. Следовательно, радиус иона Na+ меньше радиуса иона F ‒.

Еще одно очень важное свойство атомов – электроотрицательность (ЭО)

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.

Какие свойства атомов переодически изменяются

По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

В главных подгруппах сверху вниз уменьшается электроотрицательность.

В периодах слева направо электроотрицательность увеличивается.

Пример.Из указанных в ряду химических элементов выберите три элемента-неметалла. Расположите выбранные элементы в порядке возрастания их электроотрицательности. Запишите в поле ответа номера выбранных элементов в нужной последовательности:

  1) Mg         2) P       3) O       4) N       5) Ti

Решение: 

Элементы-неметаллы – это фосфор Р, кислород О и азот N.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243.

Ответ: 243

Источник