Какие свойства арифметического квадратного корня
Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств , изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n-ой степени.
Свойства корней
Мы поговорим о свойствах.
- Свойство умноженных чисел a и b, которое представляется как равенствоa·b=a·b. Его можно представить в виде множителей, положительных или равных нулю a1, a2, …, ak как a1· a2· …· ak=a1· a2· …· ak;
- из частного a:b= a:b, a≥0, b>0, он также может записываться в таком виде ab=ab;
- Свойство из степени числа a с четным показателем a2·m=am при любом числе a, например, свойство из квадрата числа a2=a.
В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a·b=a·b трансформируется как a·b=a·b. Свойства для равенства часто используются для упрощения сложных уравнений.
Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.
Первым делом, необходимо доказать свойства квадратного корня a·b=a·b. Согласно определению , необходимо рассмотреть, что a·b — число, положительное или равное нулю, которое будет равно a·bпри возведениив квадрат. Значение выражения a·b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a·b)2=a2·b2. По определению квадратного корня a2=a и b2=b, то a·b2=a2·b2=a·b.
Аналогичным способом можно доказать, что из произведения k множителей a1, a2, …, ak будет равняться произведению квадратных корней из этих множителей. Действительно, a1·a2· …· ak2=a12· a22· …· ak2=a1· a2· …· ak.
Из этого равенства следует, что a1· a2· …· ak=a1· a2· …· ak.
Рассмотрим несколько примеров для закрепления темы.
Пример 1
3·525=3·525, 4,2·1312=4,2·1312 и 2,7·4·1217·0,2(1)=2,7·4·1217·0,2(1).
Необходимо доказать свойство арифметического квадратного корня из частного: a:b=a:b, a≥0, b>0. Свойство позволяет записать равенство a:b2=a2:b2, а a2:b2=a:b, при этом a:bявляется положительным числом или равно нулю. Данное выражение и станет доказательством.
Например, 0:16=0:16, 80:5=80:5 и 30,121=30,121.
Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a2=aЧтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a≥0 и при a<0.
Очевидно, что при a≥0 справедливо равенство a2=a. При a<0 будет верно равенство a2=-a. На самом деле, в этом случае −a>0 и (−a)2=a2. Можно сделать вывод, a2=a, a≥0-a, a<0=a. Именно это и требовалось доказать.
Рассмотрим несколько примеров.
Пример 2
52=5=5 и -0,362=-0,36=0,36.
Доказанное свойство поможет дать обоснованиеa2·m=am, где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a2·m выражением (am)2, тогда a2·m=(am)2=am.
Пример 3
38=34=34 и (-8,3)14=-8,37=(8,3)7.
Свойства корня n-ой степени
Для начала необходимо рассмотреть основные свойства корней n-ой степени:
- Свойство из произведения чисел a и b, которые положительны или равны нулю, можно выразить в качестве равенства a·bn=an·bn, данное свойство справедливо для произведения k чисел a1, a2, …, ak как a1· a2· …·akn=a1n· a2n· …·akn;
- из дробного числа обладает свойством abn=anbn, где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
- При любом a и четных показателях n=2·m справедливо a2·m2·m=a, а при нечетных n=2·m−1 выполняется равенство a2·m-12·m-1=a.
- Свойство извлечения из amn=an·m, где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде …ankn2n1=an1·n2…·nk;
- Для любого неотрицательного a и произвольных n и m, которые являются натуральными, также можно определить справедливое равенство amn·m=an;
- Свойство степени n из степени числа a, которое положительно или равно нулю, в натуральной степени m, определяемое равенством amn=anm;
- Свойство сравнения , которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a<b, выполняется неравенство an<bn;
- Свойство сравнения , которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m>n, тогда при 0<a<1 справедливо неравенство am>an, а при a>1 выполняется am<an.
Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.
Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.
- Первым делом докажем свойства корня n-ой степени из произведения a·bn=an·bn. Для a и b, которые являютсяположительными или равными нулю, значение an·bn также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство an·bnn=ann·bnn. По определению корня n-ой степени ann=a и bnn=b, следовательно, an·bnn=a·b. Полученное равенство – именно то, что и требовалось доказать.
Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a1, a2, …, an выполняется a1n· a2n· …· akn ≥0 .
Приведем примеры использования свойства корня n-ой степени из произведения: 5·2127=57·2127 и 8,34·17,(21)4·34·574=8,3·17,(21)·3·574.
- Докажем свойство корня из частного abn=anbn. При a≥0 и b>0выполняется условие anbn≥0, а anbnn=annbnn=ab.
Покажем примеры:
Пример 4
8273=83273 и 2,310:2310=2,3:2310.
- Для следующего шага необходимо доказать свойстваn-ой степени из числа в степени n. Представим это в виде равенства a2·m2·m=a и a2·m-12·m-1=a для любого действительного a и натурального m. При a≥0 получаем a=a и a2·m=a2·m, что доказывает равенство a2·m2·m=a, а равенство a2·m-12·m-1=a очевидно. При a<0 получаем соответственно a=-a и a2·m=(-a)2·m=a2·m. Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a2·m2·m=a, а a2·m-12·m-1=a будет справедливо, так как за нечетной степени рассматривается -c2·m-1=-c2·m-1 для любого числа c, положительного или равного нулю.
Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:
Пример 5
744=7=7, (-5)1212=-5=5, 088=0=0, 633=6 и (-3,39)55=-3,39.
- Докажем следующее равенство amn=an·m. Для этого необходимо поменять числа до знака равно и после него местами an·m=amn. Это будет означать верная запись . Для a, которое является положительнымили равно нулю, из вида amn является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению . С их помощью можно преобразовать равенства в виде amnn·m=amnnm=amm=a. Этим доказано рассматриваемое свойство корня из корня.
Аналогично доказываются и другие свойства. Действительно, …ankn2n1n1·n2·…·nk=…ankn3n2n2·n3·…·nk=…ankn4n3n3·n4·…·nk=…=anknk=a.
Например,735=75·3 и 0,00096=0,00092·2·6=0,000924.
- Докажем следующее свойствоamn·m=an. Для этого необходимо показать, что an – число, положительное или равное нулю. При возведении в степень n·m равно am. Если число a является положительным или равным нулю, то n-ой степени из числа a является числом положительным или равным нулю При этом an·mn=annm, что и требовалось доказать.
Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров
2312=24.
- Докажем следующее свойство – свойство корня из степени вида amn=anm. Очевидно, что при a≥0 степень anm является неотрицательным числом. Более того, ее n-ая степень равна am, действительно, anmn=anm·n=annm=am. Этим и доказано рассматриваемое свойство степени.
Например, 2353=2335.
- Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a<b. Рассмотрим неравенство an<bn. Воспользуемся методом от противного an≥bn. Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным ann≥bnn, то есть, a≥b. Но это не соответствует условию a<b. Следовательно, an<bn при a<b.
Для примера приведем 124<15234.
- Рассмотрим свойство корня n-ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m>n и 0<a<1справедливо am>an. Предположим, что am≤an. Свойства позволят упростить выражение до anm·n≤amm·n. Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство anm·nm·n≤amm·nm·n, то есть, an≤am. Полученное значение при m>n и 0<a<1 не соответствует свойствам, приведенным выше.
Таким же способом можно доказать, что при m>n и a>1справедливо условие am<an.
Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.
Пример 6
0,73>0,75 и 12>127.
Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0)). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b), при возведении которого в квадрат мы получим число (a): [sqrt a=bquad text{то же самое, что }quad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0).
(bullet) Чему равен (sqrt{25})? Мы знаем, что (5^2=25) и ((-5)^2=25). Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt{25}=5) (так как (25=5^2)).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a), а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt{-25}), (sqrt{-4}) и т.п. не имеют смысла.
Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20): [begin{array}{|ll|}
hline
1^2=1 & quad11^2=121 \
2^2=4 & quad12^2=144\
3^2=9 & quad13^2=169\
4^2=16 & quad14^2=196\
5^2=25 & quad15^2=225\
6^2=36 & quad16^2=256\
7^2=49 & quad17^2=289\
8^2=64 & quad18^2=324\
9^2=81 & quad19^2=361\
10^2=100& quad20^2=400\
hline end{array}]
Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt{apm b}] Таким образом, если вам нужно вычислить, например, (sqrt{25}+sqrt{49}), то первоначально вы должны найти значения (sqrt{25}) и (sqrt{49}), а затем их сложить. Следовательно, [sqrt{25}+sqrt{49}=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt
a+sqrt b) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt
2+ sqrt {49}) мы можем найти (sqrt{49}) – это (7), а вот (sqrt
2) никак преобразовать нельзя, поэтому (sqrt 2+sqrt{49}=sqrt
2+7). Дальше это выражение, к сожалению, упростить никак нельзя
(bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrt{ab}quad text{и}quad
sqrt a:sqrt b=sqrt{a:b}] (при условии, что обе части равенств имеют смысл)
Пример: (sqrt{32}cdot sqrt 2=sqrt{32cdot
2}=sqrt{64}=8);
(sqrt{768}:sqrt3=sqrt{768:3}=sqrt{256}=16);
(sqrt{(-25)cdot (-64)}=sqrt{25cdot 64}=sqrt{25}cdot sqrt{64}=
5cdot 8=40).
(bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt{44100}). Так как (44100:100=441), то (44100=100cdot 441). По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49), то есть (441=9cdot 49).
Таким образом, мы получили: [sqrt{44100}=sqrt{9cdot 49cdot 100}=
sqrt9cdot sqrt{49}cdot sqrt{100}=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt{dfrac{32cdot 294}{27}}=
sqrt{dfrac{16cdot 2cdot 3cdot 49cdot 2}{9cdot 3}}= sqrt{
dfrac{16cdot4cdot49}{9}}=dfrac{sqrt{16}cdot sqrt4 cdot
sqrt{49}}{sqrt9}=dfrac{4cdot 2cdot 7}3=dfrac{56}3]
(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot
sqrt2)). Так как (5=sqrt{25}), то [5sqrt2=sqrt{25}cdot sqrt2=sqrt{25cdot 2}=sqrt{50}] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2),
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a).
Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a). Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a)). А мы знаем, что это равно четырем таким числам (a), то есть (4sqrt2).
Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt {} ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2), поэтому (sqrt{16}=4). А вот извлечь корень из числа (3), то есть найти (sqrt3), нельзя, потому что нет такого числа, которое в квадрате даст (3).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt{15}) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14)), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7)) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb{R}).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|), равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3).
(bullet) Если (a) – неотрицательное число, то (|a|=a).
Пример: (|5|=5); (qquad |sqrt2|=sqrt2).
(bullet) Если (a) – отрицательное число, то (|a|=-a).
Пример: (|-5|=-(-5)=5); (qquad |-sqrt3|=-(-sqrt3)=sqrt3).
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0), модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|).
(bullet) Имеют место следующие формулы: [{large{sqrt{a^2}=|a|}}] [{large{(sqrt{a})^2=a}},
text{ при условии } ageqslant 0] Очень часто допускается такая ошибка: говорят, что (sqrt{a^2}) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1). Тогда (sqrt{(-1)^2}=sqrt{1}=1), а вот выражение ((sqrt {-1})^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt{a^2}) не равен ((sqrt a)^2)!
Пример: 1) (sqrt{left(-sqrt2right)^2}=|-sqrt2|=sqrt2), т.к. (-sqrt2<0);
(phantom{00000}) 2) ((sqrt{2})^2=2).
(bullet) Так как (sqrt{a^2}=|a|), то [sqrt{a^{2n}}=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt{4^6}=|4^3|=4^3=64)
2) (sqrt{(-25)^2}=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt{x^{16}}=|x^8|=x^8) (так как любое число в четной степени неотрицательно)
Факт 6.
Как сравнить два квадратных корня?
(bullet) Для квадратных корней верно: если (sqrt a<sqrt b), то (a<b); если (sqrt a=sqrt b), то (a=b).
Пример:
1) сравним (sqrt{50}) и (6sqrt2). Для начала преобразуем второе выражение в (sqrt{36}cdot sqrt2=sqrt{36cdot 2}=sqrt{72}). Таким образом, так как (50<72), то и (sqrt{50}<sqrt{72}). Следовательно, (sqrt{50}<6sqrt2).
2) Между какими целыми числами находится (sqrt{50})?
Так как (sqrt{49}=7), (sqrt{64}=8), а (49<50<64), то (7<sqrt{50}<8), то есть число (sqrt{50}) находится между числами (7) и (8).
3) Сравним (sqrt 2-1) и (0,5). Предположим, что (sqrt2-1>0,5): [begin{aligned}
&sqrt 2-1>0,5 big| +1quad text{(прибавим единицу к обеим
частям)}\[1ex]
&sqrt2>0,5+1 big| ^2 quadtext{(возведем обе части в
квадрат)}\[1ex]
&2>1,5^2\
&2>2,25 end{aligned}] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2-1<0,5).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3<sqrt2) нельзя (убедитесь в этом сами)!
(bullet) Следует запомнить, что [begin{aligned}
&sqrt 2approx 1,4\[1ex]
&sqrt 3approx 1,7 end{aligned}] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
(bullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt{28224}). Мы знаем, что (100^2=10,000), (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000). Следовательно, (sqrt{28224}) находится между (100) и (200).
Теперь определим, между какими “десятками” находится наше число (то есть, например, между (120) и (130)). Также из таблицы квадратов знаем, что (11^2=121), (12^2=144) и т.д., тогда (110^2=12100), (120^2=14400), (130^2=16900), (140^2=19600), (150^2=22500), (160^2=25600), (170^2=28900). Таким образом, мы видим, что (28224) находится между (160^2) и (170^2). Следовательно, число (sqrt{28224}) находится между (160) и (170).
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4)? Это (2^2) и (8^2). Следовательно, (sqrt{28224}) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2):
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224).
Следовательно, (sqrt{28224}=168). Вуаля!
Ñâîéñòâà êâàäðàòíûõ êîðíåé.
- ;
- åñëè à ≥ 0 è b > 0;
- åñëè à ≥ 0 è n — íàòóðàëüíîå ÷èñëî;
- åñëè à ≥ 0 è n — íàòóðàëüíîå ÷èñëî.
- Îáðàòèòå âíèìàíèå, (−5)2 = 25, íî .
- Êîðåíü íå ìîæåò ðàâíÿòüñÿ íåïîëîæèòåëüíîìó ÷èñëó.
- — íåâîçìîæíî âû÷èñëèòü, êîðåíü èç îòðèöàòåëüíîãî ÷èñëà íå ñóùåñòâóåò.
- Åñëè , òî b2 = a, ïðè à ≥ 0 è b ≥ 0, ýòî îäíî èç âàæíåéøèõ ñâîéñòâ êîðíåé.
- Âàæíî ïîíèìàòü, ÷òî êâàäðàòíûé êîðåíü — ýòî äðóãàÿ çàïèñü ñòåïåíè ½:
Íàïðèìåð:
- Âåëè÷èíà êîðíÿ íå èçìåíèòñÿ, åñëè åãî ïîêàçàòåëü óâåëè÷èòü â n ðàç è îäíîâðåìåííî âîçâåñòè ïîäêîðåííîå çíà÷åíèå â ñòåïåíü n:
- Âåëè÷èíà êîðíÿ íå èçìåíèòñÿ, åñëè ïîêàçàòåëü ñòåïåíè óìåíüøèòü â n ðàç è îäíîâðåìåííî èçâëå÷ü êîðåíü n-é ñòåïåíè èç ïîäêîðåííîãî çíà÷åíèÿ:
- Êîðåíü îò ÷àñòíîãî ðàâåí ÷àñòíîìó îò äåëåíèÿ êîðíÿ èç äåëèìîãî íà êîðåíü èç äåëèòåëÿ (ïîêàçàòåëè êîðíåé äîëæíû áûòü îäèíàêîâûìè):
Îáðàòíî:
- ×òîáû âîçâåñòè êîðåíü â ñòåïåíü, äîñòàòî÷íî âîçâåñòè â ýòó ñòåïåíü ïîäêîðåííîå çíà÷åíèå:
Îáðàòíî, ÷òîáû èçâëå÷ü êîðåíü èç ñòåïåíè, äîñòàòî÷íî âîçâåñòè â ýòó ñòåïåíü êîðåíü èç îñíîâàíèÿ ñòåïåíè:
- Êîðåíü èç ïðîèçâåäåíèÿ íåñêîëüêèõ ñîìíîæèòåëåé ðàâåí ïðîèçâåäåíèþ êîðíåé òîé æå ñòåïåíè èç ýòèõ ñîìíîæèòåëåé (òîæå âàæíîå ñâîéñòâî êîðíåé):
Îáðàòíî, ïðîèçâåäåíèå êîðíåé îäíîé è òîé æå ñòåïåíè ðàâíî êîðíþ òîé æå ñòåïåíè èç ïðîèçâåäåíèÿ ïîäêîðåííûõ çíà÷åíèé:
Êâàäðàòíûé êîðåíü êàê ýëåìåíòàðíàÿ ôóíêöèÿ.
Êâàäðàòíûé êîðåíü – ýòî ýëåìåíòàðíàÿ ôóíêöèÿ è ÷àñòíûé ñëó÷àé ñòåïåííîé ôóíêöèè ïðè . Àðèôìåòè÷åñêèé êâàäðàòíûé êîðåíü ÿâëÿåòñÿ ãëàäêèì ïðè , à â íóëå îí íåïðåðûâåí ñïðàâà, íî íå äèôôåðåíöèðóåòñÿ (îòëè÷èòåëüíîå ñâîéòâî êîðíåé).
Êàê ôóíêöèÿ êîìïëåêñíûé ïåðåìåííûé êîðåíü — äâóçíà÷íàÿ ôóíêöèÿ, ó êîòîðîé ëèñòû ñõîäÿòñÿ â íóëå.
Ñâîéñòâî êîðíÿ êàê ôóíêöèè.
Íà [0; +∞) ìîæíî ïîñòàâèòü êàæäîìó ÷èñëó õ â ñîîòâåòñòâèå åäèíñòâåííîå ÷èñëî êîðåíü n-ñòåïåíè èç x ïðè ëþáîì çíà÷åíèè n.
Òî åñòü ýòî îçíà÷àåò, ÷òî íà ìíîæåñòâå [0; +∞) ìîæíî ãîâîðèòü î ôóíêöèè êîðíÿ:
Òåïåðü îïðåäåëèì ñâîéñòâà ôóíêöèè êîðíÿ è ïîñòðîèì åå ãðàôèê.
Îñíîâíûå ñâîéñòâà êîðíÿ êàê ôóíêöèè:
Ïðîìåæóòîê [0; +∞) – ÿâëÿåòñÿ îáëàñòüþ îïðåäåëåíèÿ.
Òàê êàê íåîòðèöàòåëüíîå ÷èñëî ÿâëÿåòñÿ êîðíåì n-ñòåïåíè èç íåîòðèöàòåëüíîãî ÷èñëà, çíà÷èò ïðîìåæóòîê [0; +∞) áóäåò îáëàñòüþ çíà÷åíèÿ ôóíêöèè.
Ïîñêîëüêó ñèììåòðè÷íûì ìíîæåñòâîì íå ÿâëÿåòñÿ îáëàñòü îïðåäåëåíèÿ ôóíêöèè, ïîýòîìó äàííàÿ ôóíêöèÿ íå ÿâëÿåòñÿ íè íå÷åòíîé, íè ÷åòíîé.
Îïåðàöèÿ ïî èçâëå÷åíèþ êîðíÿ ââîäèëàñü êàê îáðàòíàÿ îïåðàöèÿ âîçâåäåíèÿ â ñîîòâåòñòâóþùóþ ñòåïåíü.
Çíà÷èò ìîæíî óòâåðæäàòü, ÷òî:
Òåïåðü ìîæíî ïîñòðîèòü ãðàôèê ôóíêöèè êîðíÿ.
Ïîëüçóÿñü ãðàôèêîì, ìîæíî çàïèñàòü îñòàâøèåñÿ ñâîéñòâà ôóíêöèè.
Íà ïðîìåæóòêå [0; +∞) ôóíêöèÿ âîçðàñòàåò.
Ñâåðõó ôóíêöèÿ íå îãðàíè÷åíà, íî îíà îãðàíè÷åíà ñíèçó, íàïðèìåð, ïðÿìîé ó, êîòîðàÿ = -0,5.
Íà âñåé îáëàñòè îïðåäåëåíèÿ ôóíêöèÿ âûïóêëà ââåðõ.
Ó ôóíêöèè íàèìåíüøèì çíà÷åíèåì áóäåò ÿâëÿòüñÿ 0, à íàèáîëüøåãî çíà÷åíèÿ îíà íå èìååò.
Åñëè â êàæäîé èç òî÷åê íåêîòîðîãî ïðîìåæóòêà ôóíêöèÿ äèôôåðåíöèðóåìà, òî ýòî çíà÷èò, ÷òî íà äàííîì ïðîìåæóòêå îíà íåïðåðûâíà.
Òîãäà:
 ëþáîé òî÷êå ïðîìåæóòêà [0; +∞) ñóùåñòâóåò ýòà ïðîèçâîäíàÿ, èñêëþ÷åíèåì ÿâëÿåòñÿ òîëüêî òî÷êà 0.
Ïîñêîëüêó â ëþáîé òî÷êå ïðîìåæóòêà (0; +∞) ôóíêöèÿ èìååò ïðîèçâîäíóþ, çíà÷èò íà ïðîìåæóòêå (0; +∞) ôóíêöèÿ äèôôåðåíöèðóåìà.
Èçâëå÷ü êîðåíü 2, 3, 4, 5, n ñòåïåíè îíëàéí | |
Íàéòè êîðåíü 2, 3, 4, 5, … n ñòåïåíè èç ëþáîãî ÷èñëà. | |
Èçâëå÷ü êîðåíü 2, 3, 4, 5, n ñòåïåíè îíëàéí |
Ìàòåìàòèêà 4,5,6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Ìàòåìàòèêà 4,5,6,7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Êâàäðàòíûé êîðåíü. | |
Ñâîéñòâà êâàäðàòíûõ êîðíåé, äðîáíûå ñòåïåíè, êîðåíü n-íîé ñòåïåíè, ïðèìåðû âû÷èñëåíèÿ âûðàæåíèé ñ êîðíÿìè è äðóãîå. | |
Êâàäðàòíûé êîðåíü. |
Ôîðìóëû ñòåïåíåé è êîðíåé. | |
Ôîðìóëû ñòåïåíåé èñïîëüçóþò â ïðîöåññå ñîêðàùåíèÿ è óïðîùåíèÿ ñëîæíûõ âûðàæåíèé, â ðåøåíèè óðàâíåíèé è íåðàâåíñòâ. | |
Ôîðìóëû ñòåïåíåé è êîðíåé. |
Äåéñòâèÿ ñ êîðíÿìè | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ìàòåìàòèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Äåéñòâèÿ ñ êîðíÿìè |