Какие органоиды содержатся только в растительных клетках

Какие органоиды содержатся только в растительных клетках thumbnail

04.03.2018
Какие органоиды содержатся только в растительных клетках

Клетки растений, как и клетки большинства живых организмов, состоят из клеточной оболочки, которая отмежевывает содержимое клетки (протопласт) от окружающей его среды. Клеточная оболочка включает в себя достаточно жесткую и прочную клеточную стенку (снаружи) и тонкую, эластичную цитоплазматическую мембрану (внутри). Наружный слой клеточной стенки, представляющий собой пористую целлюлозную оболочку с присутствующим в ней лигнином, состоит из пектинов. Такие составляющие определяют прочность и жесткость растительной клетки, обеспечивают её форму, способствуют лучшей защите внутриклеточного содержимого (протопласта) от неблагоприятных условий. Составляющие цитоплазматической мембраны – белки и липиды. Как клеточная стенка, так и мембрана обладают полупроницаемыми способностями и выполняют транспортную функцию, пропуская внутрь клетки воду и необходимые для жизнедеятельности элементы питания, а также регулируя обмен веществ между клетками и со средой. 


Протопласт растительной клетки включает в себя внутреннюю полужидкую среду мелкозернистой структуры (цитоплазму), состоящую из воды, органических соединений и минеральных солей, в которой находятся ядро – главная часть клетки – и другие органоиды. Впервые описал жидкое содержимое клетки и назвал его протоплазмой (1825 – 1827 г.) чешский физиолог, микроскопист Ян Пуркине. Органоиды являются постоянными клеточными структурами, выполняющими специфические, предназначенные только им функции. Кроме того, они отличаются между собой строением и химическим составом. Различают немембранные органоиды (рибосомы, клеточный центр, микротрубочки, микрофиламенты), одномембранные (вакуоли, лизосомы, комплекс Гольджи, эндоплазматическая сеть) и двумембранные (пластиды, митохрондрии). 

Органоиды

Вакуоль (одна или несколько) – важнейшая составляющая протопласта, характерная только для растительных клеток. В молодых клетках присутствуют, как правило, несколько небольших вакуолей, но по мере роста и старения клетки, мелкие вакуоли сливаются в одну большую (центральную) вакуоль. Она представляет собой ограниченный мембраной (тонопластом) резервуар с находящимся внутри него клеточным соком. Основной компонент клеточного сока – это вода (70 – 95%), в которой растворены органические и неорганические соединения: соли, сахара (фруктоза, глюкоза, сахароза), органические кислоты (щавелевая, яблочная, лимонная, уксусная и пр.), белки, аминокислоты. Все эти продукты являются промежуточным результатом метаболизма и временно накапливаются в вакуолях как запасные питательные вещества, чтобы в дальнейшем вторично участвовать в обменных процессах клетки. Также в клеточном соке присутствуют танины (дубильные вещества), фенолы, алкалоиды, антоцианы и различные пигменты, которые выводятся в вакуоль, изолируясь при этом от цитоплазмы. В вакуоли поступают и ненужные продукты жизнедеятельности клетки (отходы), например, щавелевокислый калий. 



Благодаря вакуолям клетка обеспечивается запасами воды и питательных веществ (белков, жиров, витаминов, минеральных солей), а также в ней поддерживается осмотическое внутриклеточное давление (тургор). В вакуолях происходит расщепление старых белков и органелл. 



Вторая отличительная особенность растительной клетки – присутствие в ней двумембранных органоидов – пластид. Открытие этих органоидов, их описание и классификация (1880 — 1883 г.) принадлежат немецким ученым – естествоиспытателю А. Шимперу и ботанику В. Мейеру. Пластиды представляют собой вязкие белковые тельца и разделяются на три основных типа: лейкопласты, хромопласты и хлоропласты. Все они под влиянием действия определенных факторов среды способны переходить из одного вида в другой. 



Среди всех типов пластид наиболее важную роль выполняют хлоропласты: в них осуществляется процесс фотосинтеза. Эти органоиды отличаются зеленой окраской, что связано с наличием в их составе значительного количества хлорофилла – зеленого пигмента, поглощающего энергию солнечного света и синтезирующего органические вещества из воды и углекислого газа. Хлоропласты отмежевываются от цитоплазмы клетки двумя мембранами (внешней и внутренней) и имеют линзообразную овальную форму (длина составляет около 5 – 10 мкм, а ширина колеблется от 2 до 4 мкм). Кроме хлорофилла в хлоропластах присутствуют каротиноиды (вспомогательные пигменты оранжевого цвета). Количество хлоропластов в растительной клетке может варьироваться от 1 – 2-х (простейшие водоросли) до 15 – 20 штук (клетка листка высших растений). 



Мелкие бесцветные пластиды лейкопласты встречаются в клетках тех органов растения, которые скрыты от действия солнечного света (корни или корневища, клубни, луковицы, семена). Форма их очень разнообразна (шаровидные, эллипсоидные, чашевидные, гантелевидные). Они осуществляют синтез питательных веществ (главным образом, крахмала, реже – жиров и белков) из моно- и дисахаридов. Под воздействием солнечных лучей лейкопласты имеют свойство превращаться в хлоропласты. 


Хромопласты образуются в результате накопления каротиноидов и содержат значительное количество пигментов желтого, оранжевого, красного, бурого цвета. Они присутствуют в клетках плодов и лепестков, определяя их яркую окраску. Хромопласты бывают дисковидные, серповидные, зубчатые, шарообразные, ромбовидные, треугольные и пр. Участвовать в процессе фотосинтеза они не могут по причине отсутствия в них хлорофилла. 

     
Двумембранные органоиды митохондрии представлены небольшими (несколько микронов в длину) образованиями чаще цилиндрической, но также гранулоподобной, нитевидной или округлой формы. Впервые обнаружены с помощью специального окрашивания и описаны немецким биологом Р. Альтманом как биопласты (1890 г.). Название митохондрий им дал немецкий патолог К. Бенда (1897 г.). Наружная мембрана митохондрии состоит из липидов и вдвое меньшего количества белковых соединений, она имеет гладкую поверхность. В составе внутренней мембраны преобладают белковые комплексы, а количество липидов не превышает третьей части от них. Внутренняя мембрана имеет складчатую поверхность, она образует гребневидные складки (кристы), за счет которых поверхность ее значительно увеличивается. Пространство внутри митохондрии заполнено более плотным, чем цитоплазма вязким веществом белкового происхождения — матриксом. Митохондрии очень чувствительны к условиям окружающей среды, и под ее влиянием могут разрушаться или менять форму. 



Они выполняют очень сложную физиологическую роль в процессах обмена веществ клетки. Именно в митохондриях происходит ферментативное расщепление органических соединений (жирных кислот, углеводов, аминокислот), и, опять-таки под воздействием ферментов синтезируются молекулы аденозинтрифосфорной кислоты (АТФ), являющейся универсальным источником энергии для всех живых организмов. Митохондрии синтезируют энергию и являются, в сущности, «энергетической станцией» клетки. Количество этих органоидов в одной клетке непостоянно и колеблется в пределах от нескольких десятков до нескольких тысяч. Чем активнее жизнедеятельность клетки, тем большее количество митохондрий она содержит. В процессе деления клетки митохондрии также способны делиться путем образования перетяжки. Кроме того, они могут сливаться между собой, образуя одну митохондрию. 


Аппарат Гольджи назван так по имени его первооткрывателя, итальянского ученого К. Гольджи (1897 г.). Органоид расположен вблизи ядра и представляет собой мембранную структуру, имеющую вид многоярусных плоских дисковидных полостей, расположенных одна над другой, от которых ответвляются многочисленные трубчатые образования, завершающиеся пузырьками. Основная функция аппарата Гольджи – это удаление из клетки продуктов ее жизнедеятельности. Аппарат имеет свойство накапливать внутри полостей секреторные вещества, включающие пектины, ксилозу, глюкозу, рибозу, галактозу. Система мелких пузырьков (везикул), расположенная на периферии этого органоида, выполняет внутриклеточную транспортную роль, перемещая синтезируемые внутри полостей полисахариды к периферии. Достигнув клеточной стенки или вакуоли, везикулы, разрушаясь, отдают им свое внутреннее содержимое. В аппарате Гольджи происходит также образование первичных лизосом. 

Читайте также:  Какие микроэлементы содержаться в тыкве


Лизосомы были открыты бельгийским биохимиком Кристианом де Дювом (1955 г.). Они представляют собой небольшие тельца, ограниченные одной защитной мембраной и являются одной из форм везикул. Содержат более 40 различных гидролитических ферментов (гликозидаз, протеиназ, фосфатаз, нуклеаз, липаз и пр.), расщепляющих белки, жиры, нуклеиновые кислоты, углеводы, в связи с чем участвуют в процессах разрушения отдельных органоидов или участков цитоплазмы. Лизосомы выполняют важную роль в защитных реакциях и внутриклеточном питании. 


Рибосомы – это очень мелкие немембранные органоиды близкой к шаровидной или эллипсоидной формы. Формируются в ядре клетки. Из-за маленьких размеров они воспринимаются как «зернистость» цитоплазмы. Некоторая часть их находится в свободном состоянии во внутренней среде клетки (цитоплазме, ядре, митохондриях, пластидах), остальные же прикреплены к наружным поверхностям мембран эндоплазматической сети. Количество рибосом в растительной клетке относительно невелико и составляет в среднем около 30000 шт. Рибосомы располагаются поодиночке, но иногда могут образовывать и группы – полирибосомы (полисомы). Этот органоид состоит из двух различных по величине частей, которые могут существовать порознь, но в момент функционирования органоида объединяются в одну структуру. Основная функция рибосом – синтез молекул белка из аминокислот. 



Цитоплазму растительной клетки пронизывает огромное множество ультрамикроскопических жгутов, разветвленных трубочек, пузырьков, каналов и полостей, ограниченных трехслойными мембранами и образующих систему, известную как эндоплазматическая сеть (ЭПС). Открытие этой системы принадлежит английскому ученому К. Портеру (1945 г.). ЭПС находится в контакте со всеми органоидами клетки и составляет вместе с ними единую внутриклеточную систему, осуществляющую обмен веществ и энергии, а также обеспечивающую внутриклеточный транспорт. Мембраны ЭПС с одной стороны связаны с наружной цитоплазматической мембраной, а с другой – с наружной оболочкой ядерной мембраны. 



По своему строению ЭПС неоднородна, различают два её типа: гранулярную, на мембранах которой расположены рибосомы и агранулярную (гладкую) – без рибосом. В рибосомах гранулярной сети происходит синтез белка, который затем поступает внутрь каналов ЭПС, а на мембранах агранулярной сети синтезируются углеводы и липиды, также поступающие затем в каналы ЭПС. Таким образом, в каналах и полостях ЭПС происходит накопление продуктов биосинтеза, которые затем транспортируются к органоидам клетки. Кроме того, эндоплазматическая сеть разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым отдельную среду для различных реакций.

Ядро представляет собой самый крупный клеточный органоид, ограниченный от цитоплазмы чрезвычайно тонкой и эластичной двумембранной ядерной оболочкой и является наиважнейшей частью живой клетки. Открытие ядра растительной клетки принадлежит шотландскому ботанику Р. Брауну (1831 г.). В молодых клетках ядро размещено ближе к центру, в старых — смещается к периферии, что связано с образованием одной большой вакуоли, занимающей значительную часть протопласта. Как правило, в растительных клетках имеется лишь одно ядро, хотя случаются двухъядерные и многоядерные клетки. Химический состав ядра представлен белками и нуклеиновыми кислотами. 

Ядро содержит значительное количество ДНК (дезоксирибонуклеиновой кислоты), выполняющей роль носителя наследственных свойств. Именно в ядре (в хромосомах) хранится и воспроизводится вся наследственная информация, которая определяет индивидуальность, особенности, функции, признаки клетки и всего организма вцелом. Кроме того, одним из наиболее важных предназначений ядра является управление обменом веществ и большинством процессов, происходящих в клетке. Информация, поступающая из ядра, определяет физиологическое и биохимическое развитие растительной клетки.   

Внутри ядра находятся от одного до трех немембранных мелких телец округлой формы — ядрышек, погруженных в бесцветную, однородную, гелеобразную массу — ядерный сок (кариоплазму). Ядрышки состоят, главным образом, из белка; 5% их содержания составляет РНК (рибонуклеиновая кислота). Основная функция ядрышек — синтез РНК и формирование рибосом.

Источник

Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые
функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции
дыхания, выделения, пищеварения и многие другие.

Органоиды клетки подразделяются на:

  • Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
  • Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
  • Двумембранные — ядро, пластиды, митохондрии

Строение клетки

Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо
упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку
от окружающего мира и формирует ее внутреннюю среду.

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную,
жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется
только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы
белков.

Строение мембраны

Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а
гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки,
имеются также поверхностно лежащие белки — периферические.

Белки принимают участие в:

  • Поддержании постоянства структуры мембраны
  • Рецепции сигналов из окружающей среды (химического раздражения)
  • Транспорте веществ через мембрану
  • Ускорении (катализе) реакций, которые ассоциированы с мембраной

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее.
«Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует
в избирательном транспорте веществ через мембрану.

Гликокаликс

Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных
сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется
только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны
регулируют жизнедеятельность клеток.

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к
ним рецепторы. Так вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако если рецепторов
нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный
иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

Читайте также:  В каких травах содержится кальций

Инвазия ВИЧ в клетку

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают
его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые
по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой:
через мембрану вещества поступают в клетку и удаляются из нее.

Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:

  • Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
  • Поддержание обмена веществ между внешней средой и цитоплазмой
  • Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина
    — удаляются из клетки во внешнюю среду.

  • Транспортная
  • Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку.
    Выделяется два вида транспорта:

    • Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии
      или облегченной (с участием белка-переносчика) диффузии.
    • Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O,
      CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

    • Активный
    • Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и
      энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы
      натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

      Транспорт веществ через мембрану

Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:

  • Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
  • Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы
нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь
клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное
пищеварение.

Фагоцитоз и пиноцитоз

Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к
мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и
эндоцитоза противоположны.

Клеточная стенка

Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует.
Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму.
Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.

Клеточная стенка

Цитоплазма

Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме
происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

Цитоплазма

Прокариоты и эукариоты

Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от
эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды.
Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида. К прокариотам относятся бактерии
(в их числе цианобактерии), археи.

Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное
ядро. Растения, животные, грибы — относятся к эукариотам.

Прокариоты и эукариоты

Немембранные органоиды
  • Рибосома
  • Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа.
    Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая
    в ядрышке.

    Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой
    подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность
    соединенных аминокислот в заданном иРНК порядке.

    Строение рибосомы

  • Микротрубочки и микрофиламенты
  • Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают
    определенную форму клетки, участвуют в процессе деления путем образования нитей веретена деления. Микротрубочки
    также образуют основу органоидов движения: жгутиков и ресничек.

    Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме,
    служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.

    Микротрубочки и микрофиламенты

  • Клеточный центр (центросома, от греч. soma — тело)
  • Этот органоид характерен только для животной клетки, в клетках грибов и высших растений отсутствует. Клеточный
    центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления,
    располагается на полюсах клетки.

    Клеточный центр

  • Реснички и жгутики
  • Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек.
    Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

    Жгутики и реснички

Одномембранные органоиды
  • Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
  • ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части
    (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу,
    что нарушит процессы жизнедеятельности.

    Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними
    имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая
    ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

    Эндоплазматическая сеть (ЭПС)

  • Комплекс (аппарат) Гольджи
  • Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается
    вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с
    которыми здесь происходят химические видоизменения.

    Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они
    изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках
    эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

    В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

    Комплекс Гольджи

  • Лизосома (греч. lisis — растворение + soma — тело)
  • Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы.
    Лизосому можно ассоциировать с «клеточным желудком».

    Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.

    Процесс фагоцитоза

    Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком.
    В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.

    В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что
    нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

    Лизосома

  • Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
  • Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2
    (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы
    к серьезным повреждениям клетки.

  • Вакуоли
  • Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные
    вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором
    содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.

    Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление,
    придают клетке форму.

    Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют
    вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные
    органоиды на периферию.

    Вакуоли

Читайте также:  В каких продуктах содержатся витамины для волос
Двумембранные органоиды
  • Ядро («ядро» по лат. — nucleus, по греч. — karyon)
  • Важнейший компонент эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть
    ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько
    ядрышек.

    Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся
    подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество
    ядрышек или не найти ни одного.

    Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение
    между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала
    дочерним клеткам.

    Строение ядра

    Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы
    ДНК, связанные с белками.

    Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать
    вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не
    делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).

    Хроматин и хромосомы

    Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом
    называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

    Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).

    Кариотип

  • Митохондрия
  • Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит
    анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В
    результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы)
    получаются 36 молекул АТФ.

    Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется
    большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена
    матриксом.

    Митохондрия

    Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида, и рибосом. То есть
    митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.

    В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были
    самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

    Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и
    нуждаются в большом количестве энергии.

  • Пластиды (др.-греч. πλαστός — вылепленный)
  • Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У
    подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:

    • Хлоропласт (греч. chlōros — зелёный)
    • Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый
      и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее
      пространство между тилакоидами и мембраной называется стромой.

      Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая
      (светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении
      фотосинтеза в дальнейшем.

      Хлоропласт

      Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК —
      нуклеоид, рибосомы.

    • Хромопласты (греч. chromos – краска)
    • Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает
      красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

      Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал,
      в них активируется биосинтез каротиноидов.

    • Лейкопласты (др.-греч. λευκός — белый )
    • Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается
      крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать
      процесс фотосинтеза.

      Пластиды

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник