Какие частицы определяют химические свойства атома

Какие частицы определяют химические свойства атома thumbnail

Состав атома.

Атом состоит из атомного ядра и электронной оболочки.

Ядро атома состоит из протонов (p+) и нейтронов (n0). У большинства атомов водорода ядро состоит из одного протона.

Число протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в естественном ряду элементов (и в периодической системе элементов).

N(p+) = Z

Сумма числа нейтронов N(n0), обозначаемого просто буквой N, и числа протонов Z называется массовым числом и обозначается буквой А.

A = Z + N

Электронная оболочка атома состоит из движущихся вокруг ядра электронов (е-).

Число электронов N(e-) в электронной оболочке нейтрального атома равно числу протонов Z в его ядре.

Масса протона примерно равна массе нейтрона и в 1840 раз больше массы электрона, поэтому масса атома практически равна массе ядра.

Форма атома — сферическая. Радиус ядра примерно в 100000 раз меньше радиуса атома.

Химический элемент — вид атомов (совокупность атомов) с одинаковым зарядом ядра (с одинаковым числом протонов в ядре).

Изотоп — совокупность атомов одного элемента с одинаковым числом нейтронов в ядре (или вид атомов с одинаковым числом протонов и одинаковым числом нейтронов в ядре).

Разные изотопы отличаются друг от друга числом нейтронов в ядрах их атомов.

Обозначение отдельного атома или изотопа: (Э — символ элемента), например: .

Строение электронной оболочки атома

Атомная орбиталь — состояние электрона в атоме. Условное обозначение орбитали — . Каждой орбитали соответствует электронное облако.

Орбитали реальных атомов в основном (невозбужденном) состоянии бывают четырех типов: s, p, d и f.

Электронное облако — часть пространства, в которой электрон можно обнаружить с вероятностью 90 (или более) процентов.

Примечание: иногда понятия «атомная орбиталь» и «электронное облако» не различают, называя и то, и другое «атомной орбиталью».

Электронная оболочка атома слоистая. Электронный слой образован электронными облаками одинакового размера. Орбитали одного слоя образуют электронный («энергетический») уровень, их энергии одинаковы у атома водорода, но различаются у других атомов.

Однотипные орбитали одного уровня группируются в электронные (энергетические) подуровни:
s-подуровень (состоит из одной s-орбитали), условное обозначение — .
p-подуровень (состоит из трех p-орбиталей), условное обозначение — .
d-подуровень (состоит из пяти d-орбиталей), условное обозначение — .
f-подуровень (состоит из семи f-орбиталей), условное обозначение — .

Энергии орбиталей одного подуровня одинаковы.

При обозначении подуровней к символу подуровня добавляется номер слоя (электронного уровня), например: 2s, 3p, 5d означает s-подуровень второго уровня, p-подуровень третьего уровня, d-подуровень пятого уровня.

Общее число подуровней на одном уровне равно номеру уровня n. Общее число орбиталей на одном уровне равно n2. Соответственно этому, общее число облаков в одном слое равно также n2.

Обозначения: — свободная орбиталь (без электронов), — орбиталь с неспаренным электроном, — орбиталь с электронной парой (с двумя электронами).

Порядок заполнения электронами орбиталей атома определяется тремя законами природы (формулировки даны упрощенно):

1. Принцип наименьшей энергии — электроны заполняют орбитали в порядке возрастания энергии орбиталей.

2. Принцип Паули — на одной орбитали не может быть больше двух электронов.

3. Правило Хунда — в пределах подуровня электроны сначала заполняют свободные орбитали (по одному), и лишь после этого образуют электронные пары.

Общее число электронов на электронном уровне (или в электронном слое) равно 2n2.

Распределение подуровней по энергиям выражается рядом (в прядке увеличения энергии):

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

Наглядно эта последовательность выражается энергетической диаграммой:

Распределение электронов атома по уровням, подуровням и орбиталям (электронная конфигурация атома) может быть изображена в виде электронной формулы, энергетической диаграммы или, упрощенно, в виде схемы электронных слоев («электронная схема»).

Примеры электронного строения атомов:

Валентные электроны — электроны атома, которые могут принимать участие в образовании химических связей. У любого атома это все внешние электроны плюс те предвнешние электроны, энергия которых больше, чем у внешних. Например: у атома Ca внешние электроны — 4s2, они же и валентные; у атома Fe внешние электроны — 4s2, но у него есть 3d6, следовательно у атома железа 8 валентных электронов. Валентная электронная формула атома кальция — 4s2, а атома железа — 4s23d6.

Периодическая система химических элементов Д. И. Менделеева
(естественная система химических элементов)

Периодический закон химических элементов (современная формулировка): свойства химических элементов, а также простых и сложных веществ, ими образуемых, находятся в периодической зависимости от значения заряда из атомных ядер.

Периодическая система — графическое выражение периодического закона.

Естественный ряд химических элементов — ряд химических элементов, выстроенных по возрастанию числа протонов в ядрах их атомов, или, что то же самое, по возрастанию зарядов ядер этих атомов. Порядковый номер элемента в этом ряду равен числу протонов в ядре любого атома этого элемента.

Таблица химических элементов строится путем «разрезания» естественного ряда химических элементов на периоды (горизонтальные строки таблицы) и объединения в группы (вертикальные столбцы таблицы) элементов, со сходным электронным строением атомов.

В зависимости от способа объединения элементов в группы таблица может быть длиннопериодной (в группы собраны элементы с одинаковым числом и типом валентных электронов) и короткопериодной (в группы собраны элементы с одинаковым числом валентных электронов).

Группы короткопериодной таблицы делятся на подгруппы (главные и побочные), совпадающие с группами длиннопериодной таблицы.

У всех атомов элементов одного периода одинаковое число электронных слоев, равное номеру периода.

Число элементов в периодах: 2, 8, 8, 18, 18, 32, 32. Большинство элементов восьмого периода получены искусственно, последние элементы этого периода еще не синтезированы. Все периоды, кроме первого начинаются с элемента, образующего щелочной металл (Li, Na, K и т. д.), а заканчиваются элементом, образующим благородный газ (He, Ne, Ar, Kr и т. д.).

В короткопериодной таблице — восемь групп, каждая из которых делится на две подгруппы (главную и побочную), в длиннопериодной таблице — шестнадцать групп, которые нумеруются римскими цифрами с буквами А или В, например: IA, IIIB, VIA, VIIB. Группа IA длиннопериодной таблицы соответствует главной подгруппе первой группы короткопериодной таблицы; группа VIIB — побочной подгруппе седьмой группы: остальные — аналогично.

Характеристики химических элементов закономерно изменяются в группах и периодах.

В периодах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается число внешних электронов,
  • уменьшается радиус атомов,
  • увеличивается прочность связи электронов с ядром (энергия ионизации),
  • увеличивается электроотрицательность,
  • усиливаются окислительные свойства простых веществ («неметалличность»),
  • ослабевают восстановительные свойства простых веществ («металличность»),
  • ослабевает основный характер гидроксидов и соответствующих оксидов,
  • возрастает кислотный характер гидроксидов и соответствующих оксидов.

В группах (с увеличением порядкового номера)

  • увеличивается заряд ядра,
  • увеличивается радиус атомов (только в А-группах),
  • уменьшается прочность связи электронов с ядром (энергия ионизации; только в А-группах),
  • уменьшается электроотрицательность (только в А-группах),
  • ослабевают окислительные свойства простых веществ («неметалличность»; только в А-группах),
  • усиливаются восстановительные свойства простых веществ («металличность»; только в А-группах),
  • возрастает основный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • ослабевает кислотный характер гидроксидов и соответствующих оксидов (только в А-группах),
  • снижается устойчивость водородных соединений (повышается их восстановительная активность; только в А-группах).
Читайте также:  Какие свойства жидкой воды

Источник

Âñåì ïðèâåò.  ñâî¸ âðåìÿ ìåíÿ ïðîñòî ïîðàçèëî, êîãäà ÿ óçíàë, ïî÷åìó æå àòîìû âçàèìîäåéñòâóþò ìåæäó ñîáîé. Âîò ñåãîäíÿ, ÿ õî÷ó ñ âàìè ýòèì ïîäåëèòñÿ.

Äåëî â òîì, ÷òî àòîìû íåñîâåðøåííû. È îíè, ñòðåìÿñü ê ãàðìîíèè, èùóò òîãî, ñ êåì îíè ýòî ìîãóò ñäåëàòü. Çâó÷èò ïîðàçèòåëüíî, íî íà äåëå âñ¸ òàê è åñòü, à òåïåðü ïîäðîáíåé.

Äëÿ íà÷àëà äàâàéòå ïîñìîòðèì, êàê óñòðîåí àòîì. Îí äîâîëüíî ñèëüíî ïîõîæ íà ñîëíå÷íóþ ñèñòåìó. Âíóòðè ó íåãî ìàññèâíîå ÿäðî, à âîêðóã ëåòàþò îòíîñèòåëüíî ìàëåíüêèå ýëåêòðîíû. Ïîïîäðîáíåé ðàññìîòðèì ñàìûé ïðîñòîé àòîì âî âñåëåííîé – àòîì âîäîðîäà. ßäðî ó íåãî â ïîäàâëÿþùåì áîëüøèíñòâå ñëó÷àåâ ïðåäñòàâëÿåò îáû÷íûé ïðîòîí. Ìàññèâíóþ ïîëîæèòåëüíî çàðÿæåííóþ ÷àñòèöó. À ýëåêòðîí÷èê çàðÿæåí îòðèöàòåëüíî, âñïîìíèâ ÷òî ðàçíîèì¸ííî çàðÿæåííûå ÷àñòèöû ïðèòÿãèâàþòñÿ, ïîíèìàåì ïî÷åìó ýëåêòðîí âîêðóã ïðîòîíà êðóòèòñÿ, îí ïîïðîñòó ïðèòÿãèâàåòñÿ êóëîíîâñêèìè ñèëàìè.

Òåïåðü ÷àñòíîñòè. Ïîðîé, ýòî ïðîèñõîäèò äîâîëüíî ðåäêî, â ÿäðå âîäîðîäà ïðèñóòñòâóåò íå òîëüêî ïðîòîí, íî è åù¸ îäíà ìàññèâíàÿ ÷àñòèöà – íåéòðîí. Îíà íå èìååò çàðÿäà, à èìååò òîëüêî ìàññó, ïðèìåðíî òàêóþ æå, êàê è ïðîòîí. È ìû ïîëó÷àåì àòîì âîäîðîäà, êîòîðûé âåñèò âäâîå áîëüøå, ÷åì åãî ñîáðàò èç ïåðâîãî ïðèìåðà, íî îáëàäàåò òåìè æå õèìè÷åñêèìè ñâîéñòâàìè.

Òàêèå àòîìû îäíî è òîãî æå ýëåìåíòà êîòîðûå îòëè÷àþòñÿ òîëüêî ìàññàìè íàçûâàþòñÿ êðóòûì ñëîâîì – èçîòîï. Îáû÷íî äëÿ íèõ íå ïðèäóìûâàþò îòäåëüíûõ íàçâàíèé, ïðîñòî ãîâîðÿò óðàí 235 èëè óðàí 238. Íî äëÿ âîäîðîäà ñäåëàëè èñêëþ÷åíèÿ è âñå òðè åãî âîçìîæíûõ èçîòîïà èìåþò ñâîè èìåíà, ïðîòèé – îäèíîêèé ïðîòîí, äåéòåðèé – ïðîòîí + íåéòðîí, è òðèòèé – ïðîòîí + äâà íåéòðîíà.

Î òîì ñêîëüêî è êàêèõ èçîòîïîâ íà íàøåé çåìëå, ìû ìîæåì ïðèìåðíî óçíàòü èç òàáëèöû Ìåíäåëååâà, äîñòàòî÷íî ïîñìîòðåòü íà îòíîñèòåëüíóþ àòîìíóþ ìàññó, êîòîðàÿ íàïèñàíà ðÿäûøêîì ñ êàæäûì ýëåìåíòîì

Äëÿ âîäîðîäà ýòî 1,00794. Àòîìíàÿ ìàññà ÷èñòîãî ïðîòîíà + ýëåêòðîí íåìíîãî ìåíüøå. Ðàçíèöà ïîëó÷àåòñÿ îò òîãî, ÷òî â ïðèðîäå åñòü èçîòîïû. Âçÿëè ìèëëèîí àòîìîâ âçâåñèëè èõ, íî íå â êèëîãðàììàõ, à â îòíîñèòåëüíûõ àòîìíûõ ìàññàõ, êîòîðàÿ ðàâíà êñòàòè 1/12 ìàññû èçîòîïà óãëåðîäà Ñ12, à ïîòîì ðåçóëüòàò ðàçäåëèëè íà ìèëëèîí è ïîëó÷èëè 1,00794. Äðóãèìè ñëîâàìè, ýòî ÷èñëî ñóììà ìàññ èçîòîïîâ, óìíîæåííûõ íà èõ ïðîöåíòíîå ñîäåðæàíèå íà çåìëå.

Òåïåðü ïîäðîáíåé îá àòîìàõ. Ýëåêòðîíû êðóòÿòñÿ âîêðóã ÿäðà, íî íå ãäå çàõîòÿò, à òîëüêî íà îñîáûõ îðáèòàõ, êîòîðûå íàçûâàþòñÿ ýíåðãåòè÷åñêèå îðáèòàëè. È âîò çäåñü íà÷èíàåòñÿ ñàìîå èíòåðåñíîå. Îðáèòàëè ïðåäñòàâëÿþò ñîáîé êîíöåíòðè÷åñêèå ñôåðû, ò.å îäíà âíóòðè äðóãîé, êàê ìàòð¸øêè, à âíóòðè åñòü åù¸ òàêàÿ øòóêà êàê ïîäóðîâåíü. È ó êàæäîãî ïîäóðîâíÿ åñòü ìàêñèìàëüíîå êîëè÷åñòâî àòîìîâ, êîòîðûå îí ìîæåò óìåñòèòü âíóòðè, òàêæå åñòü îïðåäåë¸ííûå ïðàâèëà çàïîëíåíèÿ. Åñëè àòîì èìååò ïîëíîñòüþ çàâåðø¸ííóþ âíåøíþþ îðáèòàëü, òî îí – ñîâåðøåííûé. Åìó âîîáùå íè÷åãî íå íóæíî, îí è ñàì ïî ñåáå êðóòîé. Îí âîîáùå íå áóäåò ó÷àñòâîâàòü â õèìè÷åñêèõ ðåàêöèÿõ (íó èëè äåëàåò ýòî êðàéíå íåîõîòíî).  õèìèè òàêèå àòîìû íàçûâàþò – áëàãîðîäíûìè, èëè èíåðòíûìè. Ýòî, íàïðèìåð ãåëèé, íåîí àðãîí.

Îñòàëüíûì àòîìàì, êîòîðûå èìåþò íåçàâåðø¸ííûå ïîäóðîâíè ýíåðãåòè÷åñêèõ îðáèòàëåé, òîæå õî÷åòñÿ ñîâåðøåíñòâà, è îíè íà÷èíàþò âçàèìîäåéñòâîâàòü äðóã ñ äðóãîì. Ñàìûé ïðîñòîé ïðèìåð ìîæåò íàì ïîêàçàòü àòîì òîò æå àòîì âîäîðîäà, ó êîòîðîãî âîêðóã ÿäðà áîëòàåòñÿ îäèíîêèé ýëåêòðîí. Åãî âíåøíÿÿ ýíåðãåòè÷åñêàÿ îðáèòàëü ìîæåò âìåñòèòü äâà, à ïîòîìó îí íåñîâåðøåíåí. È îí õîäèò âîêðóã, èùåò òàêîãî æå áåäîëàãó, ñ êîòîðûì ìîæíî çàäðóæèòñÿ. Ïðè âñòðå÷å ñ äðóãèì àòîìîì âîäîðîäà, îíè ñîåäèíÿþòñÿ. Èõ ýëåêòðîíû òåïåðü íå ïðèíàäëåæàò îäíîìó, à îäíîâðåìåííî îáîèì àòîìàì, è âðîäå òåïåðü íà ýíåðãåòè÷åñêîé îðáèòàëè êàæäîãî èç íèõ ïî äâà ýëåêòðîíà. Îíè òåïåðü ñ÷àñòëèâû. Îíè òåïåðü íå àòîìû, âìåñòå îíè ñòàëè ìîëåêóëîé. Ýòî ìîëåêóëà äîâîëüíî ãàðìîíè÷íà è êàæäûé àòîì ó÷àñòíèê îáëàäàåò îäèíàêîâûìè ïðàâàìè, ïîòîìó ÷òî òÿíåò ê ñåáå ýëåêòðîí ñ îäèíàêîâîé ñèëîé. Òàêàÿ ñâÿçü àòîìîâ íàçûâàåòñÿ êîâàëåíòíàÿ íåïîëÿðíàÿ.

Íåìíîãî áîëåå ñëîæíûé ïðèìåð ñ àòîìîì êèñëîðîäà è âîäîðîäà. Êèñëîðîä èìååò ïîëíîñòüþ çàïîëíåííóþ âíóòðåííþþ îðáèòàëü äâà èç äâóõ ýëåêòðîíîâ, è íå äî êîíöà çàïîëíåííóþ âíåøíþþ, øåñòü èç âîñüìè ýëåêòðîíîâ. ×òîáû ñòàòü ïîëíîñòüþ ñîâåðøåííûì, åìó ëèáî íóæíî îòîáðàòü ó êîãî-íèáóäü äâà ýëåêòðîíà, ëèáî ðàçäàòü 6. Ïðåäñòàâüòå åñëè áû ó íàñ èçäàëè óêàç, î òîì ÷òî êâàðòèðû äàþò òåì ñåìüÿì ó êîãî ëèáî äâà ðåá¸íêà ëèáî 10. À ó âàñ èõ 8, êîíå÷íî ïðîùå âçÿòü åù¸ äâóõ ÷åì ðàçäàòü ñâîèõ øåñòåðûõ. Ïîýòîìó àòîì êèñëîðîäà íà÷èíàåò èñêàòü àòîìû âîäîðîäà ñ îäíèì ðåá¸íêîì, è ïîíÿòíî, ÷òî åìó íóæíî äâà òàêèõ àòîìà. Âòðî¸ì îíè îáðàçóþò òàêóþ øâåäñêóþ ñåìüþ, â êîòîðîé 10 äåòåé — ýëåêòðîíîâ. È ñíîâà òðè àòîìà îáðàçóþò íîâóþ ìîëåêóëó, íîâîå âåùåñòâî, âû åãî êîíå÷íî óçíàëè — ýòî âîäà. Òåïåðü àòîì êèñëîðîäà èìååò 8 ýëåêòðîíîâ íà âíåøíåé îðáèòàëè, à êàæäûé èç àòîìîâ âîäîðîäà ïî äâà.  ýòîé ìîëåêóëå íå âñ¸ òàê ðàäóæíî êàê â ïåðâîì ïðèìåðå, äåëî â òîì ÷òî êèñëîðîä ãîðàçäî ñèëüíåå òÿíåò ê ñåáå ýëåêòðîíû. Îí òàêàÿ ÿæìàòü, êîòîðàÿ ñîáèðàåò ýëåêòðîíû âîêðóã ñåáÿ, à àòîìû âîäîðîäà, ïðèõîäÿò ê íèì òîëüêî íà âûõîäíûå. Ýòîò âèä ñâÿçè íàçûâàåòñÿ êîâàëåíòíàÿ ïîëÿðíàÿ.

ß íåìíîãî ñëóêàâèë, ãîâîðÿ î òîì, ÷òî êèñëîðîäó íóæíî ðàçäàòü 6 ýëåêòðîíîâ, ÿ íå óïîìÿíóë î ïîäóðîâíÿõ. Ó íåãî åñòü âîçìîæíîñòü îòäàòü òîëüêî äâà ýëåêòðîíà ÷òîáû ïîëó÷èòü çàâåðø¸ííîñòü ïîäóðîâíåé. Íî òàêèõ ïðîôèòîâ êàê ïðè ïîëíîñòüþ çàâåðø¸ííîé âíåøíåé îðáèòàëè îí íå ïîëó÷èò, ïîýòîìó äåëàåò òàê êðàéíå íåîõîòíî.

Åù¸ áîëåå æåñòîêèé ïðèìåð, êîãäà àòîìó íå õâàòàåò âñåãî îäíîãî ýëåêòðîíà íà âíåøíåé îðáèòàëè è îí õî÷åò ïðèíÿòü ýòîò ýëåêòðîí î÷åíü ñèëüíî, à äðóãîé òàê æå ñèëüíî õî÷åò åãî îòäàòü.  ýòîì ñëó÷àå ìû ïîëó÷àåì ñèòóàöèþ, êîãäà îäèí àòîì ñîâñåì îòáèðàåò ýëåêòðîí ó äðóãîãî, è äâà ýòèõ àòîìà äåðæàòñÿ äðóã îêîëî äðóãà çà ñ÷¸ò ýëåêòðîìàãíèòíûõ ñèë.  ýòîì ñëó÷àå ãîâîðÿò î èîííîé ñâÿçè. Ñàìûé ÿðêèé ïðèìåð òàêîé ñâÿçè — ýòî ìîëåêóëà îáû÷íîé ñîëè NaCl.

 öåëîì æåëàíèå àòîìîâ çàâåðøèòü ñâîþ îðáèòàëü è îáðàçóåò âñ¸ ìíîãîîáðàçèå õèìè÷åñêèõ ðåàêöèé, äàëüøå ÷àñòíîñòè.

Íå ïóòàéòå õèìè÷åñêèå ðåàêöèè ñ ðåàêöèÿìè ñèíòåçà èëè ðàñïàäà, ïðè êîòîðûõ ïîëó÷àþòñÿ íå íîâûå õèìè÷åñêèå âåùåñòâà, à íîâûå ýëåìåíòû òàáëèöû Ìåíäåëååâà. Îá ýòîì ÿ îáÿçàòåëüíî ðàññêàæó êà íèáóäü â äðóãîé ðàç.

Источник

Все, что нас окружает, и вблизи, и в дали космических глубин, все, что составляет основу наблюдаемых нами свойств, связей и форм движения, или по-другому, бесконечное множество всех существующих в мире объектов и систем, объединяется термином » 1 материя «. Материя несотворима и неуничтожима, вечна и бесконечна. Неотъемлемым атрибутом материи является движение. Последнее представляет собой не только перемещение тел относительно друг друга (механическое движение), но и любое изменение свойств, состояний, связей и т. п.

Читайте также:  Мяч прыгает какое свойство воздуха

Всеобщие объективные формы бытия материи — это пространство и время. Одним из самых универсальных свойств материи является ее способность отражаться в нашем сознании.

Современной науке известны следующие типы материальных систем и соответствующие им структурные уровни материи:2 элементарные частицы , поля, атомы* , 3 молекулы , макроскопические тела, геологические системы, 1 планеты , звезды, внутригалактические системы, Галактика* , системы галактик. Особым типом материальных систем является живое вещество , т. е. множество организмов. Последние отличаются от других материальных объектов прежде всего своей способностью размножаться.

По современным представлениям, «кирпичиками», из которых складывается материя, являются так называемые элементарные частицы. Это — мельчайшие известные на сегодня составляющие материи. Но способность элементарных частиц к взаимным превращениям не позволяет рассматривать их как простейшие, неразложимые » кирпичики «.

Число частиц, называемых современной наукой » элементарными » , очень велико: к настоящему времени их открыто около 300. Каждая элементарная частица за исключением абсолютно нейтральных имеет свою античастицу* .

Множество элементарных частиц делится на две группы: адроны** и лептоны* . Одна частица — фотон** — не входит ни в одну из этих групп. Указанное деление производится по типам фундаментальных взаимодействий, в которых участвуют частицы на основе законов сохранения ряда физических величин.

Различают следующие типы фундаментальных взаимодействий: сильное, электромагнитное, слабое, гравитационное. Сильное взаимодействие превосходит электромагнитное примерно в 100 раз и проявляется на расстояниях порядка 10-15 м. Слабое взаимодействие, наоборот, гораздо слабее электромагнитного, но неизмеримо сильнее гравитационного.

Адроны* участвуют во всех фундаментальных взаимодействиях, включая сильные. Адроны делятся на барионы и мезоны. К числу барионов относятся гипероны и нуклоны. Нуклоны — общее название протонов* и нейтронов* , являющихся основными составляющими атомных ядер.

Лептоны — это частицы, которые участвуют во всех 4 фундаментальных взаимодействиях , кроме сильного. К числу лептонов относятся электроны* , мюоны, электронные и мюонные нейтрино.

Термин «элементарные частицы » в значительной мере условен, так как не существует четкого критерия элементарности частицы. В частности, уже установлено, что адроны имеют сложную внутреннюю структуру и, как предполагают, состоят из так называемых кварков.

По времени возможного существования в свободном состоянии все элементарные частицы делятся на стабильные и нестабильные. К стабильным относятся: фотоны*, электронное и мюонное нейтрино, электроны* , протоны* и их античастицы. Остальные элементарные частицы самопроизвольно распадаются за время от 103 с для свободных нейтронов* до 10-22-10-24 с для частиц, называемых резонансами.

К элементарным частицам, из которых состоят окружающие нас объекты, относятся электроны*, протоны* и нейтроны*. Электроны представляют собой 5 стабильные отрицательно заряженные элементарные частицы массой около 9*10-31 кг каждая. Электроны участвуют в электромагнитном , слабом и гравитационном взаимодействиях и, следовательно, относятся к лептонам* . Электроны — один из основных структурных элементов вещества: электронные оболочки атомов определяют оптические, электрические, магнитные, химические свойства атомов и молекул, а также большинство свойств твердых тел.

Протоны* также, как и электроны*, относятся к 5 стабильным элементарным частицам, масса каждого из них превышает массу электрона в 1836 раз. Протон относится к барионам и представляет собой ядро легкого изотопа атома водорода (протия).

Нейтроны являются нейтральными элементарными частицами. Масса нейтрона немного превышает массу протона. Нейтроны относятся к барионам. В свободном состоянии они нестабильны и имеют время жизни около 16 минут. Вместе с протонами нейтроны образуют атомные ядра, причем, находясь в них, нейтроны стабильны.

Мельчайшая частица химического элемента, сохраняющая его свойства, называется атомом. В центре атома находится ядро, в котором сосредоточена почти вся его масса. Ядро атома состоит из протонов и нейтронов и, следовательно, заряжено положительно. О числе протонов в ядре атома судят по порядковому номеру элемента в 6 периодической таблице химических элементов Д.И.Менделеева: число протонов в ядре атома какого-либо элемента равно его порядковому номеру в таблице.

Вокруг ядра атома движутся электроны* Число электронов в каждом атоме равно числу протонов* в ядре (заряд всех электронов атома равен заряду ядра). Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными. Химические свойства атомов определяются в основном числом электронов во внешней 7 оболочке.

Электроны, входящие в состав атома располагаются на различных расстояниях от его ядра, движутся по орбитам разной формы, имеют различные скорости и, главное, различные энергии.

Невозможно изобразить строение атома графически. Для наглядности можно представлять электроны в виде ярко светящихся шариков, которые кружатся каждый на своей орбите вокруг ядра с невообразимо огромными скоростями. При этом каждый электрон практически мгновенно очерчивает сверкающую эллиптическую кривую. Его орбита постоянно меняет свое положение относительно орбит других электронов, описывая сложную и причудливую объемную фигуру, сливаясь в мерцающее облако. Это облако в одних местах наблюдателю казалось бы более ярким (в них электронная плотность выше), в других — менее ярким (вероятность пребывания в них электронов меньше). Но в облаке никаких отдельных электронов наблюдатель различить бы не смог.

Современная физика так и представляет себе атом* : тяжелое ядро* с расположенным вокруг него электронным облаком сложной структуры. Это облако является сплошным и непрерывным. Определить, где, в каких его точках в данный момент находятся электроны, невозможно. Это связано с тем, что, во-первых, пока что нет средств для такого наблюдения, во-вторых, электроны внутри атома проявляют двойственную природу: будучи, с одной стороны, 8 элементарными частицами, они, находясь в составе атомов, ведут себя так же как волны.

Опыты и расчеты на основе законов квантовой механики показывают, что в каждом атоме* может быть несколько групп электронов* , различающихся между собой энергией и образующих вокруг атомного ядра* так называемые электронные оболочки. Их можно представлять себе в виде концентрических сфер. На рис. 22 они условно изображены в виде окружностей. Максимальное число электронных оболочек в атоме равно семи. Оболочки обозначают буквами латинского алфавита: ближе всего к атомному ядру располагается K-оболочка, затем идут L-, M-, N-, O-, P— и Q-оболочки. От того, на какой из них находится электрон, зависит его энергия: на ближайшей к ядру K-оболочке энергия электрона минимальна.

Размеры электронных оболочек определяют размеры атома в целом. Они составляют не более 10-6 м.

Если электрон*, входящий в состав атома* , переходит с какого-то уровня на более глубокий, то он излучает один квант* лучистой энергии — фотон*. Для характеристики этого явления каждой электронной оболочке приписывают так называемое главное квантовое число. Оно обозначается через n и равно одному из чисел натурального ряда от 1 до 7 (рис. 22). Главное квантовое число показывает максимально возможное число квантов, которое может испустить электрон, перемещаясь последовательно с одной орбиты на другую в направлении к ядру атома.*

Читайте также:  Какие свойства характера ярослава выявились в ходе борьбы

Электроны одной и той же оболочки могут двигаться по орбитам разного типа. Поэтому внутри каждой главной оболочки различают электронные подоболочки. Их число зависит от главного квантового числа n и равно ему. Каждый тип орбит, образующих подоболочку, характеризуется побочным квантовым числом l. Как и все квантовые числа, оно тоже является целым и может изменяться от 0 до n-1. Для электронных подоболочек используют обозначения буквами: s, p, d, f. Они соответствуют побочным квантовым числам: 0, 1, 2, 3. На рис. 23 в качестве примера условно изображены типовые орбиты всех подоболочек N-оболочки атома.

Каждая из электронных подоболочек состоит из нескольких одинаковых орбит, причем их число различно, хотя и однозначно соответствует каждому типу. Последнее зависит только от второго, побочного квантового числа и определяется так называемым «магнитным» квантовым числом m. Оно также является целым и может иметь 21+1 значений: от —l до +l. Это объясняется тем, что каждый электрон, вращаясь на орбите вокруг ядра, по существу, представляет собой виток обмотки, по которому проходит электрический ток. При этом возникает магнитное поле, позволяющее рассматривать каждую орбиту в атоме как плоский магнитный листок. При наложении на него внешнего магнитного поля каждая электронная орбита взаимодействует с ним и стремится занять в атоме определенное положение (рис. 24).

Каждый электрон* , входящий в состав атома, еще и вращается, как планета на орбите, вокруг своей оси. Это свойство электрона называется «спин«. В отличие от вращения тел в макромире, где возможны любые угловые скорости, угловая скорость электрона постоянна: ни замедлить, ни ускорить, ни остановить вращение электрона нельзя. Оно одинаково для всех электронов Вселенной. Единственно, чем могут различаться электроны, находящиеся в одном атоме, так это направлением вращения вокруг своей оси. Поэтому в атоме на каждой орбите может быть только или один, или два электрона (рис. 25).

Строение атомов изучают с помощью спектров. Оказывается, атом сам рассказывает о себе на языке спектральных линий света , испускаемого или поглощаемого атомом. Такая возможность связана с тем, что основной характеристикой атома является его энергия. Она может принимать лишь определенные (дискретные) значения, соответствующие состояниям атомов, и изменяется только скачкообразно путем квантовых переходов. Поглощая порцию света, атом переходит на более высокий уровень энергии и становится возбужденным. Испустив в таком состоянии фотон* , атом может перейти на более низкий уровень энергии. Уровень, соответствующий минимальной энергии атома, называется основным. Изменения энергетических состояний атомов, или так называемые квантовые переходы, однозначно обусловливают соответствующие особенности спектров поглощения и испускания, которые абсолютно индивидуальны для всех атомов, имеющих одинаковую структуру.

Совокупность атомов с одинаковым зарядом ядра образует химический элемент. В настоящее время известно 107 химических элементов. Из них 19, в том числе технеций, прометий, астат, франций, нептуний, плутоний были получены искусственно. Позже технеций, прометий и нептуний были обнаружены в земных породах, но лишь в ничтожных количествах. Наибольшее распространение на Земле имеют кислород, кремний, алюминий, железо, медь, натрий, калий, магний, титан, марганец. Они составляют 99,92% массы всей земной коры.

Тяжелые ядра являются неустойчивыми. Поэтому такие элементы, как америций и следующие за ним элементы в природе не обнаружены: их получают искусственно при ядерных реакциях.

Каждый атом 3.39 обозначается одной или двумя буквами латинского алфавита. Атом углерода обозначается C, кислорода — O, кальция — Ca, хлора — Cl. Для водорода, азота, серы приняты обозначения H, N, S. Атом натрия имеет обозначение Na, которое происходит от старого латинского названия поваренной соли natrium, а атом меди — Cu (от cuprum). Соединение одного атома кальция и одного атома кислорода — окись кальция (известь) обозначается CaO. Если же молекула какого-либо соединения содержит два одинаковых атома, то после их символа пишется индекс 2, например CO2 или Н2SO4.

Распределение свойств у всех химических элементов подчинено строгой закономерности. Она была открыта в 1869 году Д.И.Менделеевым и сформулирована им в виде периодического закона химических элементов. Согласно этому закону свойства элементов находятся в периодической зависимости от зарядов их атомных ядер. При этом номер элемента в системе соответствует заряду ядра атома.

Периодическая система изображается обычно в виде таблицы элементов. Имеется много вариантов этих таблиц, но на практике наиболее часто используются две. Химические элементы располагаются в них в порядке возрастания зарядов ядер: водород, гелий, литий, бериллий и т. д., — образуя семь периодов: в первом — 2 элемента, во втором и третьем — по 8, в четвертом и пятом — по 18, в шестом — 32, в седьмом — 21 элемент.

Здесь Вы можете ознакомиться с периодической таблицей Д.И.Менделеева,* а так же по каждому химическому элементу посмотреть его некоторые физические и химические свойства.

В периодах свойства элементов закономерно изменяются при переходе от щелочных металлов к инертным газам. Группы элементов, сходных по свойствам, образуют вертикальные столбцы. Внутри групп свойства элементов также изменяются закономерно. Например, у щелочных металлов при переходе от лития к францию возрастает химическая активность. Периодичность свойств элементов обусловлена периодическим повторением строения внешних электронных оболочек атомов. Последнее определяет химические и многие физические свойства элементов, а они однозначно задают положение элементов в системе.

Атомы* , соединяясь друг с другом химически, образуют молекулы. Молекула представляет собой наименьшую частицу вещества, обладающую всеми его химическими свойствами. Каждая молекула состоит из атомов, соединенных химическими связями. Число атомов в молекуле химического соединения может быть различным: от двух до тысяч (например, в молекулах белков). Молекула полимера называется макромолекулой.

Количественный и качественный состав молекулы выражается химическими формулами. Для записи этих формул используются соответствующие химические знаки.

Различают формулы: эмпирические, или брутто-формулы, рациональные и структурные. Эмпирические формулы показывают общее число атомов в молекуле. В рациональных формулах выделяют группы атомов, характерные для данного класса соединений. Структурные формулы характеризуют расположение атомов в молекуле. Например, формулы этилового спирта имеют вид:

эмпирическая — C2H6O,

рациональная — C2H5OH,

структурная —

В основе современного учения о строении вещества лежат Периодический закон и Периодическая система химических элементов. Они играют первостепенную роль в изучении всего многообразия веществ и синтезе новых элементов.

Источник