В каком лекарстве содержится целлюлоза

В каком лекарстве содержится целлюлоза thumbnail

Целлюлоза

Целлюлоза – это основной строительный материал, применяемый в растительном мире: так, мягкая верхняя часть растений преимущественно содержит целлюлозу, в состав которой входят такие элементы, как углерод, кислород, водород.

Целлюлоза является видом клетчатки.

Важно! Целлюлоза не переваривается организмом человеком, но при этом крайне полезна для него в качестве «грубого корма».

Польза целлюлозы

Целлюлоза прекрасно поглощает воду, тем самым облегчая работу толстой кишки, что помогает эффективно бороться с такими нарушениями и заболеваниями:

  • запор;
  • дивертикулез (формирование выпячиваний стенки кишечника мешковидной формы);
  • спазматический колит;
  • геморрой;
  • рак толстой кишки;
  • варикозное расширение вен.

В каких продуктах содержится целлюлоза?

Обогащены целлюлозой такие продукты:

  • яблоки;
  • свекла;
  • бразильские орехи;
  • капуста;
  • морковь;
  • сельдерей;
  • зеленые бобы;
  • груша;
  • горох;
  • недробленые крупы;
  • отруби;
  • перец;
  • листья салата.

Пектин

С греческого языка название этого углевода, являющегося одним из видов клетчатки, переводится как «свернувшийся» или «застывший». Пектин являет собой склеивающее вещество исключительно растительного происхождения.

Поступая в организм, пектин выполняет двойную функцию: во-первых, выводит вредный холестерин, токсины и канцерогены; во-вторых, обеспечивает ткани глюкозой, что понижает риск развития сердечно-сосудистых заболеваний, сахарного диабета и рака.

Польза пектина:

  • стабилизация обмена веществ;
  • улучшение периферического кровообращения;
  • нормализация перистальтики кишечника;
  • устранение проявлений хронических интоксикаций;
  • обогащение организма органическими кислотами, витаминами и минеральными веществами;
  • замедление всасывания сахара после потребления пищи, что крайне полезно для людей, страдающих сахарным диабетом.

Кроме того, этот углевод обладает обволакивающими, вяжущими, противовоспалительными и обезболивающими свойствами, благодаря чему показан людям с нарушением работы ЖКТ и язвенными болезнями.

Вред пектина

При чрезмерном употреблении пектина возможно возникновение таких реакций:

  • понижение всасывания таких полезных минеральных веществ как железо, кальций, магний и цинк;
  • брожение в толстой кишке, сопровождающееся метеоризм и понижением усвояемости белков и жиров.

Важно! С натуральными продуктами пектин поступает в организм в небольших дозах, не способных привести к передозировке, тогда как нанести вред здоровью этот полисахарид может при неумеренном потреблении БАДов.

В каких продуктах содержится пектин?

Ежедневная норма употребления пектина в чистом виде составляет порядка 20 – 30 г. Если рацион обогащен фруктами, овощами и зеленью, то нет необходимости получать пектин из синтетических добавок.

Перечень продуктов, содержащих пектин:

  • яблоки;
  • цитрусовые;
  • морковь;
  • капуста цветная и белокочанная;
  • сушеный горох;
  • зеленые бобы;
  • картофель;
  • зелень;
  • земляника;
  • клубника;
  • корнеплоды.

Инулин

Инулин относится к классу натуральных природных полисахаридов. Действие его подобно действию пребиотика, то есть вещества, которое, почти не адсорбируясь в кишечнике, активизирует метаболизм и рост полезной микрофлоры.

Важно! Инсулин на 95 процентов состоит из фруктозы, одна из функций которой заключается в связывании глюкозы и выведении ее из организма, благодаря чему снижается концентрация сахара в крови.

Польза инулина:

  • выведение токсинов;
  • нормализация работы ЖКТ;
  • улучшение усваивания как витаминов, так и минералов;
  • укрепление иммунитета;
  • снижение риска развития онкозаболеваний;
  • устранение запоров;
  • улучшение усваивания инсулина;
  • препятствование образованию сгустков крови;
  • нормализация кровяного давления;
  • способствование выведению желчи.

Важно! Инулин легко усваивается человеческим организмом, вследствие чего применяется при сахарном диабете в медицине в качестве заменителя крахмала и сахара.

В каких продуктах содержится инулин?

Лидером по содержанию инулина по праву признан топинамбур, съедобные клубни которого по своим вкусовым качествам напоминают привычный всем вкус картофеля. Так, в клубне топинамбура содержится порядка 15 – 20 процентов инулина.

Кроме того, инулин содержится в таких продуктах:

  • чеснок;
  • цикорий;
  • банан;
  • одуванчик;
  • эхинацея;
  • лук;
  • ячмень;
  • рожь;
  • лопух;
  • девясил;
  • агава.

Интересный факт! Сегодня инулин активно используется при производстве многих продуктов питания, а также напитков: мороженого, сыров, мясных изделий, мюслей, соусов, соков, продуктов детского питания, хлебобулочных, макаронных и кондитерских изделий.

Хитин

Хитин (в переводе с греческого «хитин» обозначает «одежда») представляет собой вещество, входящее в состав наружного скелета как членистоногих, так и насекомых.

Интересный факт! Хитин является одним из самых распространенных в природе полисахаридов: так, ежегодно на планете Земля в живых организмах формируется и разлагается порядка 10 гигатонн этого вещества.

Важно! Во всех организмах, которые вырабатывают и используют хитин, он присутствует не в чистом виде, а лишь в комплексе с иными полисахаридами.

Польза хитина:

  • защита от радиоактивного излучения;
  • подавление роста раковых клеток посредством нейтрализации действия канцерогенов и радионуклидов;
  • профилактика инфарктов и инсультов путем усиления эффекта препаратов, способствующих разжижению крови;
  • укрепление иммунитета;
  • снижение уровня холестерина в крови, что предупреждает развитие атеросклероза и ожирения;
  • улучшение пищеварения;
  • стимулирование роста полезных бифидобактерий, что способствует нормализации работы ЖКТ;
  • устранение воспалительных процессов;
  • ускорение процессов регенерации тканей;
  • понижение артериального давления;
  • снижение содержания сахара в крови.
Читайте также:  Какие витамины содержатся в апельсинах википедия

В каких продуктах содержится хитин?

Хитин в чистом виде содержится в наружном скелете крабов, креветок и омаров.

Кроме того, это вещество присутствует в определенных видах водорослей, в грибах (наиболее популярны среди наших соотечественников опята и вешенки), дрожжах. Кстати, крылышки бабочек и божьих коровок также содержат хитин.

Но и это еще не все: так, в странах Азии недостаток хитина восполняют путем поедания саранчи, сверчков, жуков и их личинок, червей, кузнечиков, гусениц и тараканов.

Гликоген

Гликоген (этот углевод называют также «животным крахмалом») – это основная форма хранения глюкозы, причем такого рода «законсервированная энергия» в короткий временной промежуток может восполнить дефицит глюкозы.

О чем идет речь? Углеводы, поступающие в организм с продуктами питания, при прохождении пищеварительного тракта расщепляются до глюкозы и фруктозы, которые обеспечивают системы и органы человека энергией. Но часть этих моносахаридов поступает в печень, откладываясь в ней в виде гликогена.

Важно! Именно гликогену, «законсервированному» в печени, отведена важная роль, заключающаяся в поддержании концентрации глюкозы в крови на одном и том же уровне.

Важно! Гликоген, сконцентрированный в печени, практически полностью истощается спустя 10 – 17 часов после употребления пищи, тогда как содержание мышечного гликогена существенно уменьшается лишь после длительных и интенсивных физических нагрузках.

О снижении концентрации гликогена сигнализирует появление ощущения усталости. В итоге организм начинает получать энергию из жира либо из мышц, что крайне нежелательно для тех, кто целенаправленно наращивает мышечную массу.

Израсходованный гликоген необходимо пополнить в течение одного- двух часов, что поможет избежать дисбаланса между жирами, углеводами, белками.

В каких продуктах содержится гликоген?

Гликоген отсутствует в продуктах в своем чистом виде, однако для его восполнения достаточно съесть углеводсодержащие продукты.

 

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 сентября 2017;
проверки требуют 49 правок.

Целлюло́за, клетчáтка (фр. cellulose от лат. cellula — «клетка») — органическое соединение, углевод, полисахарид с формулой (C6H10O5)n. Молекулы — неразветвлённые цепочки из остатков β-глюкозы, соединённых гликозидными связями β-(1→4). Белое твёрдое вещество, нерастворимое в воде. Главная составная часть клеточных оболочек всех высших растений.

История[править | править код]

Целлюлоза была обнаружена и описана французским химиком Ансельмом Пайеном в 1838 году.[2]

Строение[править | править код]

Целлюлоза представляет собой линейный гомополимер из сотен или десятков тысяч остатков D-глюкозы. Соединение фрагментов глюкозы обеспечивается β(1→4)-гликозидной связью. Такое соединение мономерных звеньев отличает целлюлозу от α(1→4)-гликозидных связей характерных для других гомополимеров глюкозы: крахмала и гликогена. В отличие от амилозы крахмала, молекулы которой сворачиваются в спираль, макромолекула целлюлозы склонна принимать вытянутую стержневую конформацию.

Физические свойства[править | править код]

Целлюлоза — белое твёрдое, стойкое вещество, не разрушается при нагревании (до 200 °C). Является горючим веществом, температура воспламенения — 275 °С, температура самовоспламенения — 420 °С (хлопковая целлюлоза). В 2016 году экспериментально показано плавление целлюлозы при 467 °C.[3]

Нерастворима в воде, слабых кислотах и большинстве органических растворителей. Однако благодаря большому числу гидроксильных групп является гидрофильной (краевой угол смачивания составляет 20 — 30 градусов).[4]

Целлюлоза не имеет вкуса и запаха. Зарегистрирована в качестве пищевой добавки E460.

Целлюлоза подвергается биодеградации при участии многих микроорганизмов.

Химические свойства[править | править код]

Целлюлоза состоит из остатков молекул глюкозы, которая и образуется при гидролизе целлюлозы:

(C6H10O5)n + nH2O nC6H12O6

Серная кислота с йодом, благодаря гидролизу, окрашивают целлюлозу в синий цвет.

При реакции с азотной кислотой образуется нитроцеллюлоза (тринитрат целлюлозы):

В процессе этерификации целлюлозы уксусной кислотой получается триацетат целлюлозы:

Целлюлозу крайне сложно растворить и подвергнуть дальнейшим химическим превращениям, однако в среде подходящего растворителя, например, в ионной жидкости, такой процесс можно осуществить эффективно.[5]

Получение[править | править код]

Промышленным методом целлюлозу получают методом варки щепы на целлюлозных заводах, входящих в промышленные комплексы (комбинаты). По типу применяемых реагентов различают следующие способы варки целлюлозы:

  • Кислые:

    • Сульфитный. Варочный раствор содержит сернистую кислоту и её соль, например, гидросульфит натрия. Этот метод применяется для получения целлюлозы из малосмолистых пород древесины: ели, пихты.
  • Щелочные:

    • Натронный. Используется раствор гидроксида натрия. Натронным способом можно получать целлюлозу из лиственных пород древесины и однолетних растений. Преимущество данного метода — отсутствие неприятного запаха соединений серы, недостатки — высокая стоимость получаемой целлюлозы.
    • Сульфатный. Наиболее распространённый метод на сегодняшний день. В качестве реагента используют раствор, содержащий гидроксид и сульфид натрия, и называемый белым щёлоком. Своё название метод получил от сульфата натрия, из которого на целлюлозных комбинатах получают сульфид для белого щёлока. Метод пригоден для получения целлюлозы из любого вида растительного сырья. Недостатком его является выделение большого количества дурно пахнущих сернистых соединений: метилмеркаптана, диметилсульфида и др. в результате побочных реакций.
Читайте также:  В каких продуктах содержится мало железа

Получаемая после варки техническая целлюлоза содержит различные примеси: лигнин, гемицеллюлозы. Если целлюлоза предназначена для химической переработки (например, для получения искусственных волокон), то она подвергается облагораживанию — обработке холодным или горячим раствором щелочи для удаления гемицеллюлоз.

Для удаления остаточного лигнина и придания целлюлозе белизны проводится её отбелка. Традиционная для XX века хлорная отбелка включала в себя две ступени:

  • обработка хлором — для разрушения макромолекул лигнина;
  • обработка щелочью — для экстракции образовавшихся продуктов разрушения лигнина.

С 1970-х годов в практику вошла также отбелка озоном. В начале 1980-х годов появились сведения об образовании в процессе хлорной отбелки чрезвычайно опасных веществ — диоксинов. Это привело к необходимости замены хлора на другие реагенты. В настоящее время технологии отбелки подразделяются на:

  • ECF (Elemental chlorine free) — без использования элементарного хлора, с заменой его на диоксид хлора.
  • TCF (Total chlorine free) — полностью бесхлорная отбелка. Используются кислород, озон, пероксид водорода и другое.

Применение[править | править код]

Используется в качестве наполнителя в таблетках в фармацевтике. Целлюлозу и её эфиры используют для получения искусственного волокна (вискозного, ацетатного, медно-аммиачного шёлка, искусственного меха). Хлопок, состоящий большей частью из целлюлозы (до 99,5 %), идёт на изготовление тканей.

Древесная целлюлоза используется для производства бумаги, пластмасс, кино- и фотоплёнок, лаков, бездымного пороха и т. д.[6]

Нахождение в природе[править | править код]

Целлюлоза является одним из основных компонентов клеточных стенок растений, хотя её содержание в различных клетках или даже частях стенки одной клетки сильно варьирует. Так, например, стенки клеток эндосперма злаков содержат всего около 2 % целлюлозы, в то же время хлопковые волокна, окружающие семена хлопчатника, состоят из целлюлозы более чем на 90 %. Клеточные стенки в области кончика удлинённых клеток, характеризующихся полярным ростом (пыльцевая трубка, корневой волосок), практически не содержат целлюлозы и состоят в основном из пектинов, в то время как базальные части этих клеток содержат значительные количества целлюлозы. Кроме того, содержание целлюлозы в клеточной стенке изменяется в ходе онтогенеза, обычно вторичные клеточные стенки содержат больше целлюлозы, чем первичные.

Организация и функция в клеточных стенках[править | править код]

Отдельные макромолекулы целлюлозы включают от 2 до 25 тысяч остатков D-глюкозы. Целлюлоза в клеточных стенках организована в микрофибриллы, представляющие собой паракристаллические ансамбли из нескольких отдельных макромолекул (у сосудистых растений около 36)[7], связанных между собой водородными связями и силами Ван-дер-Ваальса.

Макромолекулы, находящиеся в одной плоскости и связанные между собой водородными связями, формируют лист в пределах микрофибриллы. Между собой листы макромолекул также связаны большим числом водородных связей. Хотя водородные связи довольно слабые, благодаря их большому количеству микрофибриллы целлюлозы обладают высокой механической прочностью и устойчивостью к действию ферментов.

Индивидуальные макромолекулы в микрофибрилле начинаются и заканчиваются в разных местах, поэтому длина микрофибриллы превышает длину отдельных макромолекул целлюлозы. Следует отметить, что макромолекулы в микрофибрилле ориентированы одинаково, то есть редуцирующие концы (концы со свободной, аномерной OH-группой при атоме C1) расположены с одной стороны.

Современные модели организации микрофибрилл целлюлозы предполагают, что в центральной области она имеет высокоорганизованную структуру, а к периферии расположение макромолекул становится более хаотичным. Так, в центре микрофибриллы высших растений располагается ядро из 24 молекул. Ещё 12 молекул расположены по периферии фибриллы. Теоретически диаметр такой микрофибриллы составляет 3,8 нм, однако, данные рентгеноструктурного анализа показывают, что это значение несколько меньше — 3,3 нм, что соответствуют 24 молекулам.[7] По-другим оценкам размеры фибрилл значительно больше: 5 — 9 нм в поперечном сечении (более 50 отдельных макромолекул).[8]

Между собой микрофибриллы связаны сшивочными гликанами (гемицеллюлозы) и, в меньшей степени, пектинами. Целлюлозные микрофибриллы, связанные сшивочными гликанами, формируют трёхмерную сеть, погружённую в гелеобразный матрикс из пектинов и обеспечивающую высокую прочность клеточных стенок.

Во вторичных клеточных стенках микрофибриллы могут быть ассоциированы в пучки, которые называют макрофибриллами. Подобная организация дополнительно увеличивает прочность клеточной стенки.

Биосинтез[править | править код]

Образование макромолекул целлюлозы клеточных стенок высших растений катализирует мультисубъединичный мембранный целлюлозосинтазный комплекс, расположенный на конце удлиняющихся микрофибрилл. Полный комплекс целлюлозосинтазы состоит из каталитической, поровой и кристаллизационной субъединиц. Каталитическая субъединица целлюлозосинтазы кодируется мультигенным семейством CesA (cellulose synthase A), которое входит в суперсемейство Csl (cellulose synthase-like), включающее также гены CslA, CslF, CslH и CslC, ответственные за синтез других полисахаридов.

Читайте также:  В каких растениях содержится алкалоид

При изучении поверхности плазмалеммы растительных клеток методом замораживания-скалывания в основании целлюлозных микрофибрилл можно наблюдать так называемые розетки или терминальные комплексы размером около 30 нм и состоящие из 6 субъединиц. Каждая такая субъединица розетки является в свою очередь суперкомплексом, образованным из 6 целлюлозосинтаз. Таким образом, в результате работы подобной розетки формируется микрофибрилла, содержащая на поперечном срезе около 36 макромолекул целлюлозы. У некоторых водорослей суперкомплексы синтеза целлюлозы организованы линейно.

Интересно, что роль затравки для начала синтеза целлюлозы играет гликозилированный ситостерин. Непосредственным субстратом для синтеза целлюлозы является UDP-глюкоза. За образование UDP-глюкозы отвечает сахарозосинтаза, ассоциированная с целлюлозосинтазой и осуществляющая реакцию:

Сахароза + UDP UDP-глюкоза + D-фруктоза

Кроме того, UDP-глюкоза, может образовываться из пула гексозофосфатов в результате работы УДФ-глюкозопирофосфорилазы:

Глюкозо-1-фосфат + UTP UDP-глюкоза + PPi

Направление синтеза микрофибрилл целлюлозы обеспечивается за счёт движения целлюлозосинтазных комплексов по микротрубочкам, прилежащим со внутренней стороны к плазмалемме. У модельного растения резуховидка Таля обнаружен белок CSI1, отвечающий за закрепление и движение целлюлозосинтазных комплексов по кортикальным микротрубочкам.

Разрушение в природе[править | править код]

У млекопитающих (как и большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерии-симбионты, которые расщепляют и помогают хозяевам усваивать этот полисахарид. Расщепление целлюлозы связано с действием в расщепляющих организмах фермента целлюлазы. Бактерии, расщепляющие целлюлозу, называемые целлюлозоразрушающими (англ. cellulolytic bacteria), это часто актинобактерии рода Cellulomonas, являющиеся факультативными анаэробами[9][10], аэробные бактерии рода Cellvibrio[11]. Однако, например, для бумажных книг они представляют опасность только при их намокании, когда кожа и клей начинают разрушаться гнилостными бактериями, а бумага и ткани — целлюлозоразрушающими[12]. Очень опасны для бумажных книг плесневые грибы, разрушающие целлюлозу. За три месяца они могут разрушить 10—60 % волокон бумаги, благоприятные условия для их развития — влага и воздух повышенной влажности, наиболее благоприятная температура — от 22 до 27 градусов Цельсия, они могут распространяться от поражённых ими книг на другие[12]. Активно расщепляющие целлюлозу плесневые грибы — это, например, Chaetomium globosum, Stachybotrys echinata[13].

См. также[править | править код]

  • Список стран, производящих целлюлозу
  • Сульфатный процесс
  • Ацетилцеллюлоза
  • Ансельм Пайя
  • Айрлайд (нетканый материал из целлюлозы)

Примечания[править | править код]

  1. 1 2 3 https://www.cdc.gov/niosh/npg/npgd0110.html
  2. Никитин Н.И. Химия древесины и целлюлозы. — М.: Наука (издательство), 1962. — С. 427. — 713 с.
  3. Dauenhauer, Paul; Krumm, Christoph; Pfaendtner, Jim. Millisecond Pulsed Films Unify the Mechanisms of Cellulose Fragmentation (англ.) // Chemistry of Materials (англ.)русск. : journal. — 2016. — Vol. 28, no. 1. — P. 0001. — doi:10.1021/acs.chemmater.6b00580.
  4. ↑ Vacuum deposition onto webs, films, and foils (англ.) / Bishop, Charles A.. — 2007. — P. 165. — ISBN 0-8155-1535-9.
  5. Ignatyev, Igor; Charlie Van Doorslaer, Pascal G.N. Mertens, Koen Binnemans, Dirk. E. de Vos. Synthesis of glucose esters from cellulose in ionic liquids (англ.) // Holzforschung : journal. — 2011. — Vol. 66, no. 4. — P. 417—425. — doi:10.1515/hf.2011.161.
  6. Глинка Н.Л. Общая химия. — 22 изд., испр. — Ленинград: Химия, 1977. — 719 с.
  7. 1 2 Biochemistry & molecular biology of plants. — Second edition. — Chichester, West Sussex. — xv, 1264 pages с. — ISBN 9780470714225.
  8. Nobel, Park S. Physicochemical and environmental plant physiology. — 4th ed. — Amsterdam: Academic Press, 2009. — 1 online resource (xxi, 582 pages) с. — ISBN 9780123741431.
  9. Melissa R. Christopherson, et al. The Genome Sequences of Cellulomonas fimi and “Cellvibrio gilvus” Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of “Cellvibrio gilvus” to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov (англ.) : journal. — 2013. — doi:10.1371/journal.pone.0053954.
  10. Muhammad Irfan, et al. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity (англ.) // Turkish Journal of Biochemistry : journal. — 2012. — Vol. 37, no. 3. — P. 287—293. — doi:10.5505/tjb.2012.09709.
  11. Don J. Brenner, Noel R. Krieg, James R. Staley. Part B: The Gammaproteobacteria // Bergey’s Manual of Systematic Bacteriology (болг.). — Springer Science & Business Media, 2007. — Т. 2. The Proteobacteria. — С. 402—403.
  12. 1 2 И. К. Белая. Гигиена и реставрация библиотечных фондов. — Рипол Классик, 2013. — С. 13—21.
  13. Brian Flannigan, Robert A. Samson, J. David Miller. Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control (англ.). — 2nd ed. — CRC Press, 2016. — P. 77.

Ссылки[править | править код]

  • Статья «Целлюлоза» (Химическая энциклопедия)
  • LSBU cellulose page (англ.)  (недоступная ссылка с 07-02-2018 [884 дня])
  • Clear description of a cellulose assay method at the Cotton Fiber Biosciences unit of the USDA (англ.).  (недоступная ссылка с 07-02-2018 [884 дня])
  • Cellulose Ethanol Production — First commercial plant (англ.)  (недоступная ссылка с 07-02-2018 [884 дня])

Источник