В какой треугольник можно вписать окружность свойства
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 мая 2020;
проверки требует 1 правка.
Окружность, вписанная в многоугольник ABCDE
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех его сторон.
В многоугольнике[править | править код]
- Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
В треугольнике[править | править код]
Окружность, вписанная в треугольник со сторонами a, b, c.
Свойства вписанной окружности:
где — стороны треугольника, — высоты, проведённые к соответствующим сторонам[1];
где — площадь треугольника, а — его полупериметр.
, — полупериметр треугольника (Теорема котангенсов).
- Если — основание равнобедренного треугольника , то окружность, касающаяся сторон угла в точках и , проходит через центр вписанной окружности треугольника .
- Теорема Эйлера: , где — радиус описанной вокруг треугольника окружности, — радиус вписанной в него окружности, — центр описанной окружности, — центр вписанной окружности.
- Если прямая, проходящая через точку I параллельно стороне , пересекает стороны и в точках и , то .
- Если точки касания вписанной в треугольник окружности соединить отрезками, то получится треугольник со свойствами:
- Биссектрисы T являются серединными перпендикулярами T1
- Пусть T2 — ортотреугольник T1. Тогда его стороны параллельны сторонам исходного треугольника T.
- Пусть T3 — серединный треугольник T1. Тогда биссектрисы T являются высотами T3.
- Пусть T4 — ортотреугольник T3, тогда биссектрисы T являются биссектрисами T4.
- Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен .
- Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно .
- Расстояние от вершины C до центра вписанной окружности равно , где — радиус вписанной окружности, а γ — угол вершины C.
- Расстояние от вершины C до центра вписанной окружности может также быть найдено по формулам и
- Теорема о трезубце или теорема трилистника: Если D — точка пересечения биссектрисы угла A с описанной окружностью треугольника ABC, I и J — соответственно центры вписанной и вневписанной окружности, касающейся стороны BC, тогда .
- Лемма Веррьера[2][3]: пусть окружность касается сторон , и дуги описанной окружности треугольника . Тогда точки касания окружности со сторонами и центр вписанной окружности треугольника лежат на одной прямой.
- Теорема Фейербаха. Окружность девяти точек касается всех трёх вневписанных окружностей, а также вписанной окружности. Точка касания окружности Эйлера и вписанной окружности известна как точка Фейербаха.
Связь вписанной и описанной окружностей[править | править код]
[4]
,
где — полупериметр треугольника, — его площадь.
- Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[5].
- Для треугольника можно построить полувписанную окружность, или окружность Варьера. Это окружность, касающаяся двух сторон треугольника и его описанной окружности внутренним образом. Отрезки, соединяющие вершины треугольника и соответствующие точки касания окружностей Веррьера с описанной окружностью, пересекаются в одной точке. Эта точка служит центром гомотетии с положительным коэффициентом, переводящей описанную окружность во вписанную.
- Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и полувписанной окружности.
Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R
В четырёхугольнике[править | править код]
- Описанный четырёхугольник, если у него нет самопересечений («простой»), должен быть выпуклым.
- Некоторые (но не все) четырёхугольники имеют вписанную окружность. Они называются описанными четырёхугольниками. Среди свойств этих четырёхугольников наиболее важным является то, что суммы противоположных сторон равны. Это утверждение называется теоремой Пито.
- Иными словами, в выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны: .
- Во всяком описанном четырёхугольнике две середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения продолжений противоположных сторон четырёхугольника (если они не параллельны). Эта прямая называется прямой Гаусса. На рисунке она зелёная, диагонали красные, отрезок с концами в точках пересечения продолжений противоположных сторон четырёхугольника тоже красный.
- Центр описанной около четырёхугольника окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).
В сферическом треугольнике[править | править код]
Вписанная окружность для сферического треугольника — это окружность, касающаяся всех его сторон.
- Тангенс радиуса[6] вписанной в сферический треугольник окружности равен[7]:73-74
- Вписанная в сферический треугольник окружность принадлежит сфере. Радиус, проведенный из центра сферы через центр вписанной окружности пересечет сферу в точке пересечения биссектрис углов (дуг больших кругов сферы, делящих углы пополам) сферического треугольника[7]:20-21.
Обобщения[править | править код]
- Вписанной сферой называется сфера, касающаяся всех граней многогранника.
- Эллипс Штейнера — вписанный в треугольник эллипс.
См. также[править | править код]
Примечания[править | править код]
- ↑ Altshiller-Court, 1925, p. 79.
- ↑ Ефремов Д. Новая геометрия треугольника. — Одесса, 1902. — С. 130. — 334 с.
- ↑ Ефремов Д. Новая геометрия треугольника. Изд. 2. Серия: Физико-математическое наследие (репринтное воспроизведение издания).. — Москва: Ленанд, 2015. — 352 с. — ISBN 978-5-9710-2186-5.
- ↑ Longuet-Higgins, Michael S., «On the ratio of the inradius to the circumradius of a triangle», Mathematical Gazette 87, March 2003, 119—120.
- ↑ Мякишев А. Г. Элементы геометрии треугольника. Серия: «Библиотека „Математическое просвещение“». М.: МЦНМО, 2002. c. 11, п. 5
- ↑ Здесь радиус окружности измеряется по сфере, то есть представляет собой градусную меру дуги большого круга, соединяющей точку пересечения радиуса сферы, проведенного из центра сферы через центр окружности, со сферой и точку касания окружностью стороны треугольника.
- ↑ 1 2 Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — 154 с.
Литература[править | править код]
- Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 89. — 383 с. — ISBN 5-09-001287-3.
- Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 52-53. — ISBN 5-94057-170-0.
- Altshiller-Court, Nathan (1925), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), New York: Barnes & Noble
Серединный перпендикуляр к отрезку
Определение 1. Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Рис.1
Теорема 1. Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство. Рассмотрим произвольную точку D, лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Рис.2
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB. Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1). Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство. Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D.
Рис.3
Докажем, что отрезок AE длиннее отрезка EB. Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Рис.4
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE. Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Окружность, описанная около треугольника
Определение 2. Окружностью, описанной около треугольника, называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником.
Рис.5
Свойства описанной около треугольника окружности. Теорема синусов
Фигура | Рисунок | Свойство |
Серединные перпендикуляры к сторонам треугольника | Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство | |
Окружность, описанная около треугольника | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство | |
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | |
Центр описанной около прямоугольного треугольника окружности | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство | |
Центр описанной около тупоугольного треугольника окружности | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | |
Теорема синусов | Для любого треугольника справедливы равенства (теорема синусов): , где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности. Посмотреть доказательство | |
Площадь треугольника | Для любого треугольника справедливо равенство: S = 2R2 sin A sin B sin C , где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство | |
Радиус описанной окружности | Для любого треугольника справедливо равенство: где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство |
Окружность, описанная около треугольника |
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство |
Центр описанной около остроугольного треугольника окружности |
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. |
Центр описанной около прямоугольного треугольника окружности |
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство |
Центр описанной около тупоугольного треугольника окружности |
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. |
Теорема синусов |
Для любого треугольника справедливы равенства (теорема синусов): , где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Площадь треугольника |
Для любого треугольника справедливо равенство: S = 2R2 sin A sin B sin C , где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Радиус описанной окружности |
Для любого треугольника справедливо равенство: где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности. Посмотреть доказательство |
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3. Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство. Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC, и обозначим точку их пересечения буквой O (рис. 6).
Рис.6
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC, то в силу теоремы 1 справедливо равенство:
CO = AO .
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB, то в силу теоремы 1 справедливо равенство:
AO = BO .
Следовательно, справедливо равенство:
CO = BO ,
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие. Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство. Рассмотрим точку O, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
AO = OB = OC ,
из которого вытекает, что окружность с центром в точке O и радиусами OA, OB, OC проходит через все три вершины треугольника ABC, что и требовалось доказать.
Теорема 4 (теорема синусов). Для любого треугольника (рис. 7)
Рис.7
справедливы равенства:
.
Доказательство. Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R, на которую опирается вписанный угол величины φ , вычисляется по формуле:
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Рис.8
Угол MPN, как угол,опирающийся на диаметр, является прямым угломугол,опирающийся на диаметр, является прямым углом, и равенство (1) вытекает из определения синуса угла прямоугольного треугольника.
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Теорема синусов доказана.
На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.
Тема: Окружность
Урок: Вписанная окружность
1. Опорные определения
Начнем с напоминания важных опорных фактов, и первый факт – это касание прямой и окружности.
Задана окружность с центром О и радиусом r (см. Рис. 1). А – общая точка прямой и окружности. Если такая точка единственная, то прямая р – касательная к окружности. Радиус ОА, проведенный в точку касания, перпендикулярен касательной р.
Справедливо обратное: если А – общая точка прямой и окружности, и радиус, проведенный в эту точку, перпендикулярен прямой, то общая точка единственная, и прямая р – касательная.
Рис. 1
Рассмотрим касание окружности сторонами угла (см. Рис. 2).
Помним, что биссектриса угла – это геометрическое место точек, равноудаленных от сторон данного угла.
Точка О лежит на биссектрисе: перпендикуляр ОА к прямой а, ОВ – к прямой В, .
Построим окружность радиусом ОА.
Рис. 2
Утверждаем, что окружность касается прямой а, т.к. А – общая точка прямой а и окружности, и она единственная (радиус ОА перпендикулярен прямой). Аналогично прямая b касается окружности.
Таким образом, имеем окружность, вписанную в угол.
Многоугольник имеет несколько углов и несколько сторон, мы готовы дать определение вписанной в него окружности.
2. Определение вписанной окружности
Окружность называется вписанной в многоугольник, если касается всех его сторон.
Мы будем рассматривать только выпуклые многоугольники, рассмотрим пример – окружность вписана в выпуклый четырехугольник:
Как получить центр и радиус вписанной окружности?
Мы знаем, что точка О – центр, лежит на биссектрисе угла А, вписана в угол А, аналогично точка О лежит на биссектрисе каждого угла и вписана в каждый угол.
Таким образом, все биссектрисы четырехугольника пересекаются в одной точке – точке О.
Строим биссектрисы, на их пересечении получаем центр окружности. Из точки О опускаем перпендикуляры к сторонам
Рис. 3
четырехугольника в точки K, L, M, N. Касательные, проведенные к окружности из одной точки, равны между собой, таким образом, из каждой вершины выходит пара равных касательных – , , , .
3. Теоремы о четырехугольниках, описанных около окружности
В описанном четырехугольнике суммы противоположных сторон равны.
Дано: окружность с центром О вписана в четырехугольник ABCD. Четырехугольник ABCD описан около окружности. Таким образом, описанный четырехугольник – это такой четырехугольник, в который можно вписать окружность (см. Рис. 4)_.
Доказать:
Рис. 4
Доказательство:
Запишем равенство через отрезки касательных:
; ; ; ;
;
Раскроем скобки:
;
Таким образом, суммы противоположных сторон четырехугольника, описанного около окружности, равны, что и требовалось доказать.
Итак, если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
Справедлива обратная теорема.
Теорема
Если суммы противоположных сторон выпуклого четырехугольника равны, в него можно вписать окружность.
Это важная теорема, так как центр вписанной окружности находится на пересечении биссектрис. Отсюда, если суммы противоположных сторон четырехугольника равны, его биссектрисы пересекутся в одной точке.
Данную теорему мы доказывать не будем.
Прямую и обратную теоремы можно объединить.
Теорема
В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
4. Примеры четырехугольников, в которые можно и нельзя вписать окружность
Приведем конкретные примеры четырехугольников, в которые можно вписать окружность и в которые нельзя вписать окружность.
Ромб
У ромба все стороны равны, отсюда суммы противоположных сторон равны, значит, в ромб можно вписать окружность (см. Рис. 5). Кроме того, мы знаем, что диагонали ромба перпендикулярны и делят углы ромба пополам. Значит, каждая диагональ – это биссектриса, биссектрисы всех четырех углов пересеклись в одной точке – точке О. О – центр вписанной окружности.
Рис. 5
Квадрат
Квадрат – частный случай ромба, в него также можно вписать окружность (см. Рис. 6).
Рис. 6
Прямоугольник
В прямоугольник нельзя вписать окружность (см. Рис. 7), это очевидно из рисунка – суммы противоположных сторон не равны, т.к. противоположные стороны равны между собой, а соседние не равны:
Рис. 7
5. Теорема об окружности, вписанной в треугольник
В любой треугольник можно вписать окружность, и только одну (см. Рис. 8).
Рис. 8
Доказательство:
Мы знаем, что все биссектрисы треугольника пересекаются в одной точке – пусть в точке О. Проведем биссектрисы АО, ВО, СО. Точка их пересечения О равноудалена от сторон треугольника. Она равноудалена от сторон угла – АС и АВ, так как принадлежит биссектрисе этого угла. Аналогично она равноудалена от сторон углов и , таким образом, от трех сторон треугольника.
Опустим перпендикуляры из точки О на стороны треугольника – ОМ на сторону АС, OL – на ВС, ОК – на АВ. Эти перпендикуляры и будут расстояниями от точки О до сторон треугольника, и они равны:
.
Обозначим расстояние от точки О до сторон треугольника за r и рассмотрим окружность с центром в точке О и радиусом r.
Окружность касается прямой АВ, т.к. имеет с ней общую точку К, и радиус ОК, проведенный в эту точку, перпендикулярен прямой АВ. Аналогично окружность касается прямых АС и ВС. Таким образом, окружность касается всех тех сторон треугольника, значит, она вписана в треугольник.
Докажем, что данная вписанная окружность единственная. Если бы была вторая окружность, ее центр был бы равноудален от всех сторон треугольника и лежал бы на пересечении всех биссектрис. Но все биссектрисы пересекаются в единственной точке – точке О, таким образом, и вписанная окружность в треугольник единственная.
6. Выводы по уроку
Итак, мы ознакомились с понятием вписанной окружности и доказали некоторые важные теоремы. В следующем уроке мы рассмотрим описанную окружность.
Список литературы
- Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
- Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
- Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Uztest.ru (Источник).
- Mschool.kubsu.ru (Источник).
- Ege-study.ru (Источник).
Домашнее задание
- Задание 1 – в треугольник вписана окружность с центром О. Найдите угол , если угол .
- Задание 2 – на сторонах АВ и АС треугольника АВС, описанного около окружности с центром О, отмечены точки D и E таким образом, что , . Доказать, что .
- Задание 3 – найдите радиус окружности, вписанной в прямоугольный треугольник, периметр которого 24 см, а гипотенуза 10 см.