В какой среде кислой или щелочной наиболее выражены окислительные свойства

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = — 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде — бихроматы (дихроматы) — соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

Читайте также:  В каком ряду неметаллические свойства усиливаются

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = — 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде — бихроматы (дихроматы) — соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = — 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде — бихроматы (дихроматы) — соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

Читайте также:  В какое значение можно установить свойство серии кодов объекта

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

Задача 1085. 
Для каких соединений хрома характерны окислительные свойства? Привести примеры реакций, в которых проявляются эти свойства.
Решение:
а) В соединениях хрома (II) атомы хрома находятся в своей степени окисления +2, поэтому они способны понижать степень окисления с +2 до 0, т.е. проявлять окислительные свойства.
Восстанавливается водородом до металлического хрома при 1000°С:

CrO + H2 ⇒ Cr + H2O

Также можно восстановить коксом:

CrO + C ⇒ Cr + CO

б) Соединения Cr3+ наиболее устойчивая степень окисления хрома. Для соединений хрома(III) характерны окислительные и восстановительные свойства, потому что он находится в своей промежуточной степени окисления +3. хром(III) способен уменьшать свою степень окисления с +3 до +2, например:
Реакция алюмотермии:

 2Al + Сг2О3 ⇒ 2Cr + Al2O3

Силикотермическое восстановление основано на реакции:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Восстановлением безводного хлорида хрома(III) водородом при 450° С:

2CrCl3 + H2 = 2CrCl2 + 2HCl

Восстановление хлорида хрома(III) цинком в присутствии соляной кислоты:

2CrCl3 + 3Zn + 4HCl = 2CrCl2 + 3ZnCl2 + 2H2↑

в) Соединения хрома(VI) — сильные окислители, например:

K2Cr2O7 + 14HCl = 3Cl2↑ + 2CrCl3 + 2KCl + 7H2O.

В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III):

K2Cr2O7 + 3Na2SO3 + 4H2SO4 = K2SO4 + Cr2(SO4)3 + 3Na2SO4 + 4H2O.

Разложение дихромата аммония:

(NH4)2Cr2O7  ⇒ Cr2O3 + N2↑ + 4H2O

В кислотной среде соединения Сr+6 переходят в соединения Сr+3 под действием восстановителей: H2S, SO2, FeSO4

K2Cr2O7 + 3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4  + 7Н2О

Оксид хрома (VI) – очень сильный окислитель, поэтому энергично взаимодействует с органическими веществами:

С2Н5ОН + 4СrО3 = 2СО2↑ + 2Сr2О3 + 3Н2О

Окисляет также иод, серу, фосфор, уголь:

3S + 4CrO3 = 3SO2↑ + 2Cr2O3
 

Задача 1086. 
В какой среде — кислой или щелочной наиболее выражены окислительные свойства хрома (VI)? восстановительные свойства хрома (III)? Чем это объясняется?
Решение:
а) Соединения хрома (VI) в кислых растворах проявляют свойства сильных окислителей:

Сг2О72- + 14Н+ + 6  = 2Сг3+ + 7Н2О;      Е° = -1,33 В

Хроматы в щелочной среде являются менее энергичными окислителями, чем бихроматы в кислой среде:

СгО42- +  4Н2О + 3   = Сг(ОН)3↓ + 5ОН− ;   Е° = — 0,13 В

В щелочной среде образуются соединения хроматы (монохроматы), соли хромовой кислоты H2CrO4 в кислой среде — бихроматы (дихроматы) — соли H2Cr2O7. 

С уменьшением рН (с изменением щелочной среды на кислую) хромат ион СгО42-переходит в бихромат-ион Сг2О72-, который обладает большей окислительной способностью.

б) Степень окисления хрома +3 является самой устойчивой, поэтому соединения хрома (III) являются слабыми окислителями и восстановителями, в щелочной среде — восстановительные свойства выражены сильнее:

Cr3+ + 4H2O -3  = СгО42- + 8H+

При взаимодействии с сильными окислителями соединения Сг3+ окисляются с образованием веществ, содержащих хром в степени окисления +6. Например, при сплавлении Сг2О3 с нитратом калия и карбонатом натрия образуется хромат натрия:

 +3                  +5                                               +6                 +3
Сг2О3 + 3KNO3 + Na2CO3 ⇒ 2Na2СгО4 + 3KNO2 + 2СО2↑

При взаимодействии с сильными восстановителями соединения Сг3+ восстанавливаются в соединения Сг2+.

Таким образом, хром в своей промежуточной степени окисления +3 проявляет как окислительные, так и восстановительные свойства. Восстановительные свойства Сг2+ выражены сильнее в щелочной среде, потому что гидролиз его солей протекает с образованием кислой среды.

Источник

Общая химия

Автор Н.Л.Глинка

ся равновесие

Сг20|» + 14Н+ + 6е~ +=± 2Сг3+ + 7Н20

а в щелочной

[Сг(ОН)6]3′ 4- 20Н» CrOj» + 4Н20 4-3Однако и в кислой, и в щелочной среде окисление хрома(III) приводит к уменьшению рН раствора; обратный же процесс — восПриведем несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

1. При пропускании сероводорода через подкисленный серной

кислотой раствор дихромата оранжевая окраска раствора пере-

ходит в зеленую и одновременно жидкость становится мутной

вследствие выделения серы:

K2Cr207 -f 3H2S + 4H2S04 = Cr2(S04)3 + 3S| + K2S04 + 7H2G

2. При действии концентрированной соляной кислоты на ди-

Читайте также:  Какими лечебными свойствами обладает ирга

хромат калия выделяется хлор и получается зеленый раствор, со-

держащий хлорид хрома(III):

К2Сг207 + I4HC1 = 2СгС13 + ЗС12| + 2КХ1 + 7Н20

3. Если пропускать диоксид серы через концентрированный

раствор дихромата калия, содержащий достаточное количество

серной кислоты, то образуются эквимолекулярные количества суль-

фатов калия и хрома (III):

K2Cr207 -f 3SOa + H2S04 = Cr2(S04)3 + K2so4 + н2о

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(S04h* 12Н20. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия К2О2О7 и дихромат натрия Na2Cr207*2H20, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома, или хромовый ангидрид, Сг03 выпадает в виде темно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

К2Сг207 -f H2S04 = 2Сг03| 4- K2S04 4- Н20

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) .Сг203.

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

229. Молибден (Moiibdenium). Главным природным соединением молибдена является молибденит, или молибденовый блеск, M0S2 — минерал, очень похожий по внешнему виду на графит и долгое время считавшийся таковым. В 1778 г. Шееле, показал, что при обработке молибденового блеска азотной кислотой получается белый остаток, обладающий свойствами кислоты. Шееле назвал его молибденовой кислотой и сделал заключение, что сам минерал представляет собой сульфид нового элемента. Пять лет спустя этот элемент был получен в свободном состоянии путем прокаливания молибденовой кислоты с древесным углем.

Общее содержание молибдена в земной коре составляет 0,001 % (масс.). Залежи молибденовых руд имеются в СССР, Чили, Мексике, Норвегии и Марокко. Большие запасы молибдена содержатся в сульфидных медных рудах.

Для получения металлического молибдена из молибденового блеска последний переводят обжигом в Мо03, из которого металл восстанавливают водородом. При этом молибден получается в виде порошка.

Компактный молибден получают главным образом методом порошковой металлургии. Этот способ состоит из прессования порошка в заготовку и спекания заготовки.

При прессовании порошка из него получают заготовки — тела определенной формы, обычно — бруски (штабики). Штабики молибдена получают в стальных пресс-формах при давлении до 300 МПа. Спекание штабиков в атмосфере водорода проводят в две стадии. Первая из них — предварительное спекание — проводится при 1100—1200 °С и имеет целью повысить прочность и электрическую проводимость штабиков. Вторая стадия — высокотемпературное спекание — осуществляется пропусканием электрического тока, постепенно нагревающего штабики до 2200—2400 °С. При этом получается компактный металл. Спеченные штабики поступают на механическую обработку — ковку, протяжку.

Для получения крупных заготовок молибдена применяют дуговую плавку, позволяющую получать слитки массой до 2000 кг. Плавку в дуговых печах ведут в вакууме. Между катодом (пакет спеченных штабиков молибдена) и анодом (

Рекомендуемые книги

Введение в химию окружающей среды.

Книга известных английских ученых раскрывает основные принципы химии окружающей
среды и их действие в локальных и глобальных масштабах. Важный аспект книги
заключается в раскрытии механизма действия природных геохимических процессов в
разных масштабах времени и влияния на них человеческой деятельности.
Показываются химический состав, происхождение и эволюция земной коры, океанов и
атмосферы. Детально рассматриваются процессы выветривания и их влияние на
химический состав осадочных образований, почв и поверхностных вод на континентах.
Для студентов и преподавателей факультетов биологии, географии и химии
университетов и преподавателей средних школ, а также для широкого круга
читателей.

Химия и технология редких и рассеянных элементов.

Книга представляет собой учебное пособие по специальным курсам для студентов
химико-технологических вузов. В первой части изложены основы химии и технологии
лития, рубидия, цезия, бериллия, галлия, индия, таллия. Во
второй
части книги изложены основы химии и технологии скандия, натрия, лантана,
лантаноидов, германия, титана, циркония, гафния. В

третьей части книги изложены основы химии и технологии ванадия, ниобия,
тантала, селена, теллура, молибдена, вольфрама, рения. Наибольшее внимание
уделено свойствам соединений элементов, имеющих значение в технологии. В
технологии каждого элемента описаны важнейшие области применения, характеристика
рудного сырья и его обогащение, получение соединений из концентратов и отходов
производства, современные методы разделения и очистки элементов. Пособие
составлено по материалам, опубликованным из советской и зарубежной печати по
1972 год включительно.

Источник