В каких реакциях обмена веществ вода является конечным продуктом биология

В каких реакциях обмена веществ вода является конечным продуктом биология thumbnail

4.2. Обмен веществ и энергии

1.В каких реакциях обмена исходным веществом
для синтеза углеводов  является вода?

     ОТВЕТ: Фотосинтеза.

2.Энергию 
какого типа потребляют гетеротрофные живые  организмы?

      ОТВЕТ: Энергию
окисления органических веществ.

3.Энергию какого типа потребляют автотрофные
организмы?

      ОТВЕТ: Фототрофы – энергию света,
хемотрофы – энергию окисления неорганических веществ.

4.В какую фазу фотосинтеза происходит синтез
АТФ?

      ОТВЕТ: Всветовой фазе.

5.Какое вещество служит источником кислорода
во время фотосинтеза?

      ОТВЕТ: Вода ( в
результате фотолиза – распада под действием света в световой фазе, происходит
выделение кислорода).

6.Почему гетеротрофные организмы сами  не могут создавать органические вещества?

     ОТВЕТ: В их клетках нет
хлоропластов и хлорофилла.

7.Почему жиры являются  наиболее энергетическими  веществами?

     ОТВЕТ: При их окислении
выделяется два раза больше энергии, чем при окислении углеводов и белков.

8.Что служит матрицей для синтеза и-РНК?

     ОТВЕТ: Участокодной 
из полинуклеотидных цепей ДНК.

9.В каких реакциях обмена углекислый газ
является исходным веществом для синтеза углеводов?

     ОТВЕТ:  В реакциях фотосинтеза.

10.  В чем проявляется  сходство фотосинтеза и энергетического обмена
веществ?

     
ОТВЕТ:
В обоих процессах происходит синтез АТФ.

11.  В чем сходство и различие  процессов фотосинтеза и хемосинтеза?

ОТВЕТ: 
Сходство:  в результате этих
процессов синтезируется глюкоза. Различия: фотосинтез происходит в клетках
растений, в хлоропластах, а хемосинтез – в клетках хемосинтезирующих бактерий
(азото-, серо_, железобактерий) на мембранных структурах. В результате
фотосинтеза выделяется кислород, а в результате хемосинтеза – нет.

12.  В каких реакциях обмена веществ вода
является конечным продуктом?

    
ОТВЕТ:
В реакциях окисления органических веществ в процессе энергетического
обмена.

13.  В каких реакциях обмена веществ  осуществляется связь между ядром, ЭПС,
рибосомами, митохондриями?

      
ОТВЕТ:
В реакциях биосинтеза белка.

14.  В чем сходство биосинтеза белка и
фотосинтеза?

      
ОТВЕТ:
В образовании органических веществ с затратой энергии АТФ.

15.  Что происходит в световую фазу фотосинтеза?

  
ОТВЕТ:
 Синтез АТФ и
высокоэнергетических атомов водорода, фотолиз 
( распад воды под действием света приводящий к выделению кислорода).

16.  Какие основные процессы происходят в
темновую  фазу фотосинтеза?

    
ОТВЕТ:
 Поступление из
атмосферы углекислого газа и его восстановление водородом за счет   НАДФ.
2Н; синтез глюкозы и крахмала с использованием АТФ.

17.  Какова роль нуклеиновых кислот в биосинтезе
белка?

   ОТВЕТ:
В ДНК содержится  информация о
первичной структуре молекул белка. Эта информация переписывается на молекулу
и-РНК, которая переносит ее  из ядра к
рибосоме, т.е. и-РНК служит матрицей для сборки молекул белка. Т-РНК
присоединяют аминокислоты и доставляют их к месту синтеза белка – к рибосоме.

18.  В процессе трансляции участвовало 30
молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого
белка, а также число триплетов и нуклеотидов в гене, который кодирует этот
белок.

   ОТВЕТ:
Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка
участвовало  30 т-РНК, белок состоит из
30 аминокислот. Одну аминокислоту кодирует триплет нуклеотидов, значит, 30
аминокислот кодирует 30 триплетов. 
Триплет состоит из 3 нуклеотидов, значит количество нуклеотидов  в гене, кодирующем  белок из 30 аминокислот, равно 30х3= 90. 

19.  В чем заключается биологический смысл
окислительного фосфорилирования?

   ОТВЕТ:
В результате реакции окислительного фосфорилирования   из АДФ и остатка фосфорной кислоты  образуется молекула АТФ, которая является
источником энергии для всех процессов жизнедеятельности клетки.

20.  В чем заключается сходство и различие
автотрофного питания у фото- и хемосинтезирующих бактерий?

   ОТВЕТ:
Сходство:  в результате фототрофного  и хемотрофного  питания 
образуется  углевод – глюкоза.

Различие:  фототрофные бактерии для синтеза глюкозы
используют энергию света, а хемотрофные – энергию окисления  неорганических веществ.

21.  Какова взаимосвязь между пластическим и
энергетическим обменом веществ? Аргументируйте свой ответ.

   ОТВЕТ:
Для реакций пластического обмена (для синтеза веществ) нужна энергия АТФ,
которая образуется  в результате
энергетического обмена. А для реакций энергетического обмена (для распада
веществ) нужны вещества, которые синтезируются в результате пластического
обмена. В результате пластического обмена (биосинтеза белков) образуются
ферменты, которые участвуют в реакциях энергетического обмена.

22.  Почему реакции биосинтеза белка называют
матричными?

   ОТВЕТ:
Матрица, это объект,  с которого
снимается копия. Участок молекулы ДНК является матрицей для синтеза и -РНК, а
молекула и-РНК является матрицей для сборки молекулы белка в рибосомах.

23.  В чем проявляется взаимосвязь
энергетического обмена и биосинтеза белка?

   ОТВЕТ:  В процессе биосинтеза белка используется
энергия  молекул АТФ, синтезируемых в
процессе  энергетического обмена. В
реакциях энергетического  обмена
участвуют ферменты, образованные в результате биосинтеза белка. Процесс  распада 
белков до аминокислот  является
промежуточным этапом энергетического обмена.

24.  Определите последовательность нуклеотидов
на и-РНК, антикодоны т-РНК и аминокислотную последовательность соответствующего
фрагмента молекулы белка (используя таблицу генетического кода), если фрагмент
цепи ДНК имеет следующую последовательность нуклеотидов: ГТГЦЦГТЦАААА.

   ОТВЕТ:
Последовательность на  и-РНК:
ЦАЦГГЦАГУУУУ; антикодоны на т-РНК: ГУГ,ЦЦГ,УЦА,ААА; аминокислотная
последовательность: Гис-гли-сер-фен.

25.  К каким последствиям приведет снижение
активности ферментов, участвующих в кислородном этапе  энергетического обмена животных?

ОТВЕТ: Реакции полного биологического
окисления будут идти слабо, и в клетке будет преобладать процесс
бескислородного окисления – гликолиз. Молекул АТФ синтезируется меньше, что
приведет к недостатку  энергии в клетке и
организме. В клетке и организме будут накапливаться продукты неполного
окисления, которые могут привести к  их
гибели. Из-за недостатка  молекул АТФ
замедлятся   процессы пластического
обмена.

26.  Одна из цепей ДНК имеет последовательность
нуклеотидов: ЦАТ- ГГЦ- ТГТ – ТЦЦ – ГТЦ… Объясните, как изменится структура
молекулы белка, если произойдет удвоение четвертого триплета нуклеотидов в  цепи ДНК?

   ОТВЕТ:
Новая цепь ДНК будет: ЦАТ- ГГЦ- ТГТ
– ТЦЦ — ТЦЦ – ГТЦ.
Структура и-РНК будет: ГУА – ЦЦГ – АЦА – АГГ – АГГ –
ЦАГ. Произойдет удлинение молекулы белка на одну аминокислоту. Молекула белка
будет состоять из аминокислот: вал – про – тре – арг – арг – гли.

27.  В биосинтезе полипептида участвуют молекулы
т-РНК с антикодонами УГА, АУГ, АГУ, ГГЦ, ААУ. Определите нуклеотидную
последовательность участка каждой цепи молекулы ДНК, который несет информацию о
синтезируемом полипептиде, и число нуклеотидов, содержащих аденин (А), гуанин
(Г), тимин (Т), цитозин (Ц) в двухцепочечной молекуле ДНК. Ответ поясните.

   ОТВЕТ:  1)и-РНК: АЦУ – УАЦ – УЦА – ЦЦГ – УУА.

      2)
ДНК:  1-ая цепь: ТГА – АТГ – АГТ – ГГЦ –
ААТ

                      2-ая цепь: АЦТ – ТАЦ –ТЦА
–ЦЦГ —  ТТА

      3)
количество нуклеотидов: А – 9 (30%), Т – 9 (30%), так как А=Т;  Г -6 (20%), Ц – 6 (20%), так как Г=Ц.

28.  В каких случаях изменение
последовательности нуклеотидов ДНК не влияет на структуру и функции
соответствующего белка?

ОТВЕТ: 
Если при замене нуклеотида,  новый
кодон соответствует  той же аминокислоте
или аминокислоте  со сходным химическим
составом,  который не меняет структуру
белка; если изменения произойдут  на
участках между  генами или неактивных
участках ДНК.

29.  В биосинтезе белка участвовали  т-РНК с антикодонами: УУА, ГГЦ, ЦГЦ, АУУ,
ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы
ДНК, который  несет информацию о
синтезируемом полипептиде, и число нуклеотидов, содержащих аденин, гуанин,
тимин, цитозин в двухцепочечной молекуле ДНК.

   ОТВЕТ:
Антикодоны т-РНК комплементарны кодонам и-РНК, а последовательность  нуклеотидов и-РНК комплементарна одной из
цепей ДНК.

т-РНК:            УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ

и-РНК:          ААУ-ЦЦГ-ГЦГ-УАА-ГЦА

1
цепь ДНК: ТТА-ГГЦ-ЦГЦ-АТТ-ЦГТ

2
цепь ДНК: ААТ-ЦЦГ-ГЦГ-ТАА-ГЦА.

В
молекуле ДНК  А=Т= 7, число Г=Ц= 8.

30.  Общая масса всех молекул ДНК в 46 соматических
хромосомах одной соматической клетки человека 
составляет 6х10-9 мг. Определите, чему равна масса всех
молекул ДНК в сперматозоиде и в соматической клетке перед началом деления и
после его окончания. Ответ поясните.

   ОТВЕТ:
В половых клетках 23 хромосомы, т.е. в два раза меньше, чем в соматических,
поэтому масса ДНК в сперматозоиде в два раза меньше и составляет  6х 10-9
: 2= 3х 10-9мг.
Перед началом деления (в интерфазе) количество
ДНК  удваивается и масса ДНК равна 6х 10-9
х2 = 12 х 10-9мг. После митотического деления в соматической клетке
число хромосом не меняется и масса ДНК 
равна 6х 10-9  мг.

31.  В пробирку поместили рибосомы из разных
клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все
условия для синтеза белка. Почему в пробирке будет синтезироваться один вид
белка на разных рибосомах?

   ОТВЕТ:  Первичная структура белка определяется
последовательностью аминокислот, зашифрованных 
на участке  молекулы ДНК.  ДНК является матрицей для молекулы и-РНК.
Матрицей для синтеза белка является молекула и-РНК, а они в пробирке  одинаковые. К месту синтеза белка т-РНК
транспортируют аминокислоты в соответствии 
с кодонами и-РНК.

32.  В процессе трансляции участвовало 30
молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого
белка, а также число триплетов и нуклеотидов в гене, который кодирует этот
белок.

   ОТВЕТ:
одна т-РНК транспортирует одну аминокислоту, следовательно, 30 т-РНК
соответствуют 30 аминокислотам, и белок состоит из 30 аминокислот;одну аминокислоту кодирует триплет
нуклеотидов, значит, 30 аминокислот кодируют 30 триплетов;количество нуклеотидов в гене, кодирующем белок из 30 аминокислот,
30 х 3 = 90.

33.  В одной
молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа
нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином
(А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.

   ОТВЕТ:
аденин (А) комплементарен  тимину
(Т), а гуанин (Г) – цитозину (Ц), 
поэтому количество комплементарных нуклеотидов одинаково; количество
нуклеотидов с аденином  составляет 24%;  количество
гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них – 26%.

34.             
Дана цепь
ДНК: ЦТААТГТААЦЦА.  Определите:

А) Первичную 
структуру  закодированного  белка.

Б) Количество (в%) 
различных видов нуклеотидов в этом гене (в двух цепях)

В) Длину этого гена

Г) Длину белка

ОТВЕТ:  А) 1-ая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА-

                     
2-ая цепь ДНК: ГАТ-ТАЦ-АТТ-  ГГТ-

                                   И-РНК:
ЦУА-АУГ-УАА-ЦЦА

По таблице генетического кода определяем аминокислоты:

                     Аминокислоты: лей- мет- тир — про

Б) Количество А=8; Т=8; Г=4; Ц=4. Все количество = 24 =
100%.

А=Т= 8   (8х100%) : 24
= 33, 3%

Г=Ц=4    (4х100%) :
24= 16,6%

В)  Длина гена: 12х
0,34 = 4,04 нм  (0,34нм – длина 1
нуклеотида)

Г) Длина белка: 4 кодона х 0,3нм = 1,2 нм  (0,3нм – длина 1 ам/к-ты.)

35. 
Определите:последовательность
нуклеотидов на и-РНК, антикодоны соответствующих т-РНК и аминокислотную
последовательность соответствующего фрагмента молекулы белка (используя таблицу
генетического кода),

если фрагмент цепи
ДНК имеет следующую последовательность нуклеотидов: ГТГТАТГГААГТ.

ОТВЕТ: ГТГ-ТАТ-ГГА-АГТ
—     ДНК

    ЦАЦ-АУА-ЦЦУ-УЦА – и-РНК

                ГУГ;
УАУ; ГГА; АГУ —  антикодоны т-РНК

    Аминокислоты: Гис-иле-про-сер

Источник

Питание — это составная часть обмена веществ, необходимое условие для нормального роста, развития и жизнедеятельности организма.

Питание — это совокупность процессов поступления, переваривания, всасывания и усвоения организмом питательных веществ, необходимых для нормальной жизнедеятельности организма.

Человек — всеяден, т.е. питается пищей как животного, так и растительного происхождения.

Для нормального роста, развития и жизнедеятельности человеку необходимо постоянное поступление в его организм основных питательных веществ (белков, жиров, углеводов, минеральных солей, воды и витаминов), входящих в состав разнообразных продуктов питания.

Полноценное питание предусматривает соответствие энергетических затрат их восполнению. Средняя суточная потребность в белках примерно составляет 100-150 г (не менее 40 г), в углеводах — 400-500 г и в жирах — около 80-100 г.

Белки — важная часть питания человека. Они являются основным строительным материалом клеток. В состав белков организма человека входит приблизительно 20 видов аминокислот (некоторые из них являются незаменимыми, т.е. не могут синтезироваться в организме человека).

Источники белка в пище — мясо, рыба, молоко и молочные продукты, бобовые и зерновые культуры, орехи.

В продуктах животного происхождения — мясе, рыбе, яйцах, молоке — состав аминокислот соответствует потребностям организма. Растительные белки являются неполноценными для человека, поэтому при вегетарианской диете необходимо правильно подбирать рацион, чтобы несколькими растительными белками заменить полноценный животный белок.

Жиры поступают в организм человека как с животной пищей (мясо, сливочное масло), так и с растительной (жидкие масла — оливковое, подсолнечное, рапсовое и др.). Эти вещества, наряду с белками, являются строительным материалом клеток. Кроме того, жиры служат важным резервным источником энергии для основных процессов жизнедеятельности человека. Необходимо потреблять жиры как животного, так и растительного происхождения. Жидкие растительные жиры содержат незаменимые жирные кислоты, которых нет в жирах животного происхождения.

Углеводы, или сахара, — основной источник энергии в организме человека. Простые сахара, такие, как глюкоза и фруктоза, а также сложные углеводы (крахмал и др.) в больших количествах содержатся в продуктах растительного происхождения: в зернах злаков, картофеле, ягодах и фруктах.

Витамины содержатся как в растительной, так и в животной пище. Эти вещества необходимы человеку для осуществления нормального обмена веществ и других процессов жизнедеятельности, но в очень малых количествах.

Минеральные соли — это необходимые компоненты здоровой жизни человека. Они активно участвуют не только в процессе обмена веществ, но и в электрохимических процессах нервной системы и мышечной ткани. Также они необходимы при формировании таких структур, как скелет и зубы. Человек получает минеральные соли с самыми различными продуктами. Эти вещества, как и витамины, усваиваются в организме человека в неизменённом виде.

Вода составляет около 2/3 человеческого организма и является главным компонентом каждой клетки. Она поступает в организм человека и с питьём, и с пищей (например, в мякоти арбуза или огурца содержится до 98% воды).

Между организмом и окружающей его средой непрерывно происходит обмен веществ и энергией.

Обменом веществ называют сложную цепь превращений веществ в организме, начиная с момента их поступления из внешней среды и заканчивая удалением продуктов распада.

Обмен веществ начинается с поступления в организм воды и пищевых продуктов. В пищеварительном канале часть веществ с помощью ферментов расщепляется до более простых, которые всасываются в кишечнике и переходят в кровь (и с кровью вещества переносятся к клеткам тела). В клетках происходят процессы их химических превращений (клеточный метаболизм), в процессе которых организм получает энергию и материалы, необходимые ему для построения собственных клеток и тканей.

Не использованные в результате превращений веществ остатки и продукты жизнедеятельности (продукты распада) выводятся из организма (с мочой, калом, потом и выдыхаемым воздухом).

Пластический и энергетический обмен

Обмен веществ в организме — это не просто постоянный ток веществ через его основные структуры, а совокупность всех химических реакций, происходящих в организме. Все реакции, связанные с превращением веществ, можно отнести к двум процессам: пластическому и энергетическому обмену.

Пластический обмен (ассимиляция или анаболизм) — совокупность реакций синтеза органических веществ в клетке с использованием (затратой) энергии.

В процессах энергетического обмена (диссимиляции, или катаболизма, или биологического окисления) происходит разрушение (распад) полученных с пищей питательных веществ до простых соединений с высвобождем энергии, запасённой в химических связях органических молекул пищи.

В здоровом организме оба процесса строго сбалансированы (хотя в период быстрого роста ассимиляция может временно преобладать над диссимиляцией).

Совокупность всех реакций, связанных с обменом веществ (ферментативных химических реакций) в организме называется обмен веществ (метаболизм).

Основными видами обмена веществ являются белковый, углеводный, жировой и водно-солевой обмены.

Белковый обмен — использование и преобразование аминокислот белков в организме человека.

При окислении 1 г белка выделяется 17,2 кДж (4,1 ккал) энергии.

Но организм редко использует большое количество белков для покрытия своих энергетических затрат, так как белки нужны для выполнения других функций (основная функция — строительная). Организму человека нужны не белки пищи, сами по себе, а аминокислоты, из которых они состоят.

В процессе пищеварения белки пищи, распадаясь в желудочно-кишечном тракте до отдельных аминокислот, всасываются в тонком кишечнике в кровяное русло и разносятся к клеткам, в которых происходит синтез новых собственных белков, свойственных человеку.

Уровень содержания аминокислот в крови регулирует печень. Распадаясь, аминокислоты образуют воду, углекислый газ и ядовитый аммиак. В клетках печени из образовавшегося аммиака синтезируется мочевина (которая затем выводится вместе с водой почками в составе мочи и частично кожей), а углекислый газ выдыхается через лёгкие.

Остатки аминокислот используются, как энергетический материал (преобразуются в глюкозу, избыток которой превращается в гликоген).

Углеводный обмен

Углеводный обмен – совокупность процессов преобразования и использования углеводов.

Углеводы являются основным источником энергии в организме. При окислении 1 г углеводов (глюкозы) выделяется 17,2 кДж (4,1 ккал) энергии.

Углеводы поступают в организм человека в виде различных соединений: крахмал, гликоген, сахароза или фруктоза и др. Все эти вещества расподаются в процессе пищеварения до простого сахара глюкозы, всасываются ворсинками тонкого кишечника и попадают в кровь.

Глюкоза необходима для нормальной работы мозга. Снижение содержания глюкозы в плазме крови с 0,1 до 0,05 % приводит к быстрой потере сознания, судорогам и гибели.

Основная часть глюкозы окисляется в организме до углекислого газа углекислого газа и воды, которые выводятся из организма через почки (вода) и лёгкие (углекислый газ).

Часть глюкозы превращается в полисахарид гликоген и откладывается в печени (может откладываться до 300 г гликогена) и мышцах (гликоген является основным поставщиком энергии для мышечного сокращения).

Уровень глюкозы в крови постоянный (0,10–0,15%) и регулируется гормонами щитовидной железы, в том числе инсулином. При недостатке инсулина уровень глюкозы в крови повышается, что ведет к тяжёлому заболеванию — сахарному диабету.

Инсулин также тормозит распад гликогена и способствует повышению его содержания в печени.

Другой гормон поджелудочной железы – глюкагон способствует превращению гликогена в глюкозу, тем самым повышая ее содержание в крови (т.е. оказывает действие, противоположное инсулину).

При большом количестве углеводов в пище их избыток превращается в жиры и откладывается в организме человека.

1 г углеводов содержит значительно меньше энергии, чем 1 г жиров. Но зато углеводы можно окислить быстро и быстро получить энергию.

Обмен жиров

Обмен жиров — совокупность процессов преобразования и использования жиров (липидов).

При распаде 1 г жира выделяется 38,9 кДж (9,3 ккал) энергии (в 2 раза больше, чем при расщеплении 1 г белков или углеводов).

Жиры являются соединениями, включающими в себя жирные кислоты и глицерин. Жирные кислоты под действием ферментов поджелудочной железы и тонкого кишечника, а также при участии желчи всасываются в лимфу в ворсинках тонкого кишечника. Далее с током лимфы липиды попадают в кровоток, а затем в клетки. 

Как и углеводы, жиры распадаются до углекислого газа и воды и выводятся тем же путём.

В гуморальной регуляции уровня жиров участвуют железы внутренней секреции и их гормоны.

Значение жиров

  • Значительная часть энергетических потребностей печени, мышц, почек (но не мозга!) покрывается засчёт окисления жиров.
  • Липиды являются структурными элементами клеточных мембран, входят в состав медиаторов, гормонов, образуют подкожные жировые отложения и сальники.
  • Откладываясь в запас в соединительнотканных оболочках, жиры препятствуют смещению и механическим повреждениям органов.
  • Подкожный жир плохо проводит тепло, что способствует сохранению постоянной температуры тела.

Потребность в жирах определяется энергетическими потребностями организма в целом и составляет в среднем 80-100 г в сутки. Избыток жира откладывается в подкожной жировой клетчатке, в тканях некоторых органов (например, печени), а также и на стенках кровеносных сосудов.

Если в организме недостает одних веществ, то они могут образовываться из других. Белки могут превращаться в жиры и углеводы, а некоторые углеводы — в жиры. В свою очередь, жиры могут стать источником углеводов, а недостаток углеводов может пополняться за счет жиров и белков. Но ни жиры, ни углеводы не могут превращаться в белки.

Подсчитано, что взрослому человеку для нормальной жизнедеятельности необходимо не менее 1500-1700 ккал в сутки. Из этого количества энергии на собственные нужды организма уходит 15-35 %, а остальное затрачивается на выработку тепла и поддержание температуры тела.

В клетках организма человека около 72% воды (около 2/3 массы тела), 28% входит в состав крови, лимфы, межклеточной жидкости.

Вода выполняет транспортную, выделительную, теплорегуляционную функции. Она является средой для протекания химических реакций и определяет физические свойства клетки. Потребность в воде у взрослого человека составляет 2-3 л в сутки. Вода поступает в организм с пищей и с жидкостями (вода, чай, соки и др. напитки).

В клетках тела человека образуется метаболическая вода (как продукт окисления органических соединений). Нормальный водный обмен предполагает равновесие между количеством поглощенной и выделенной воды.

Выводится вода из организма с потом, мочой, в виде водяного пара, через кишечник.

Потребность в воде (жажда) вызывает возбуждение питьевого центра в головном мозге (в гипоталамусе), а удовлетворение жажды тормозит этот центр.

Минеральные соли — важная составляющая часть организма человека. Соли участвуют в поддержании рН внутренней среды организма, процессах возбудимости нервной и мышечной тканей, составляют основу межклеточного вещества костной ткани.

Ежедневно организм нуждается в солях кальция, натрия, калия, хлора, фосфора, железа и других элементов.

Пример:

Соли кальция необходимы в процессе свертывании крови, калий и кальций участвуют в механизме мышечного сокращения и т. д.

Источником минеральных солей являются обычные пищевые продукты. Они в достаточном количестве содержат все необходимые организму минеральные вещества за исключением хлорида натрия, который добавляют в пищу (поваренная соль).

Витамины — биологически активные вещества, необходимые для жизнедеятельности организма.

Витамины необходимы организму в очень малых количествах, однако при их недостатке быстро развиваются гиповитаминозы, а при нехватке — авитаминозы, которые могут иметь даже смертельный исход.

Входя в состав ферментов, витамины усиливают действие других биологически активных веществ, повышают иммунитет и сопротивляемость организма к болезням, стимулируют рост и регенерацию тканей и т. д.

Витамины обозначают латинскими буквами и делят на 2 группы: водорастворимые и жирорастворимые. на две группы: водорастворимые и жирорастворимые ).

  • Водорастворимые витамины (B1, B2, B5, B6, B9, B12, PP, C) поступают в организм человека в виде водных растворов.
  • Жирорастворимые витамины (A, D, E, K) растворяются в жирах пищи и всасываются вместе с ними.

Водорастворимые витамины

 C (аскорбиновая кислота) — участвует в окислительно-восстановительных процессах, повышает устойчивость к инфекциям. При гиповитаминозе развивается болезнь десен — цинга, поражаются стенки кровеносных сосудов (кровоточат дёсны, зубы расшатываются и выпадают). Если не возместить недостаток этого витамина, то человек может погибнуть. Витамин C содержится в овощах и фруктах, но больше всего его в плодах шиповника, чёрной смородине, облепихе и сладком перце.

B1 (тиамин) — участвует в обмене белков, жиров и углеводов, в проведении нервного импульса. Витамин B1 необходим для нормальной работы нервной, эндокринной и иммунной систем. Гиповитаминоз вызывает заболевание полиневрит. Сначала возникает бессонница, повышенная раздражительность, беспокойство, головные боли. Появляются слабость и боли в ногах. Наиболее богаты тиамином изделия из муки грубого помола, содержащие отруби, а также бобовые растения: горох, фасоль, соя.

B2 (рибофлавин) – участвует в клеточном дыхании. Гиповитаминоз вызывает поражение слизистой оболочки уголков рта, у человека плохо заживают повреждения кожи, слезятся глаза, развивается светобоязнь. Главными источниками витамина B2 являются молоко и молочные продукты, яйца, печень, мясо, рыба, хлеб, гречневая крупа.

B6 — участвует в обмене веществ, при гиповитаминозе возникают заболевания кожи, судороги, анемия.

B12 — участвует в белковом обмене. При гиповитаминозе возникает анемия.

PP (никотиновая кислота) — обеспечивает в организме нормальную интенсивность энергетического обмена, частвует в клеточном дыхании, работе пищеварительной системы.
При недостатке никотиновой кислоты развивается пеллагра — тяжёлое заболевание, связанное с поражением центральной нервной системы, желудочно-кишечного тракта и кожи. Источниками витамина PP служат крупы, хлеб грубого помола, бобовые, мясо и внутренние органы животных (печень, почки, сердце), рыба и некоторые овощи. Очень высоко содержание никотиновой кислоты в дрожжах, сушёных грибах.

A (ретинол)  — обеспечивает нормальный рост организма, формирование скелета, размножение клеток кожных покровов, а также необходим для нормального зрения. Этот витамин поступает в организм только с продуктами животного происхождения. Он содержится в печени рыб и других животных, яйцах, масле, сметане. В растениях присутствует растительный пигмент бета-каротин, из которого витамин Aмедленно образуется в самом организме человека. При гиповитаминозе наступает куриная слепота (снижение способности различать цвета в полумраке).

D (кальциферол) — регулирует обмен кальция и фосфора и необходим для нормального образования костной ткани. Он повышает всасывание этих минеральных веществ в тонком кишечнике и способствует их отложению в костях. При гиповитаминозе развивается заболевание — рахит. Витамином D богаты в основном продукты животного происхождения: печень рыб, молочные продукты, яйца. Также витамин D вырабатывается в коже человека под действием ультрафиолетового излучения (при загаре).

E — не даёт свободным радикалам кислорода разрушать клеточные мембраны. При гиповитаминозе ослабляется половая функция, развивается дистрофия скелетных мышц. Источником этого витамина являются растительные масла, особенно нерафинированные. Витамин Е содержится также в печени, яйцах, хлебобулочных изделиях, гречке, бобовых.

K — (филлохинон) участвует в образовании протромбина, без которого невозможно свёртывание крови. При гиповитаминозе снижается свертываемость крови. Витамин К содержат многие продукты: цветная капуста, салат, кабачки, говяжья печень. Кроме того, этот витамин вырабатывается бактериями, живущими в толстом кишечнике.

Сохранение витаминов в пище

Каждый человек должен ежедневно получать с пищей все необходимые витамины, если их не хватает в пище, можно принимать препараты витаминов по рекомендации врача.

Сохранение витаминов в продуктах питания зависит от кулинарной обработки пищи, условий и продолжительности ее хранения.

Наименее устойчивы витамины A, B1 и B2.

Установлено, что витамин A разрушается во время варки и сушки продуктов, его содержащих (например, в варёной моркови его вдвое меньше, чем в сырой). Термическая обработка также значительно снижает содержание в пище витаминов группы B (мясо после варки теряет от 15 до 60% витаминов группы B, а растительные продукты — около 1/5).

При нагревании, и даже при соприкосновении с воздухом легко разрушается витамин C, поэтому овощи надо очищать и нарезать перед самой варкой. Чтобы сохранить больше витаминов в овощах, их лучше опускать их сразу в кипящую воду, варить недолго в закрытой посуде и есть сразу же после приготовления.

Обменные процессы в организме происходят под действием ферментов и регулируются нервно-гуморальным путем.

Почти все железы внутренней секреции принимают участие в регуляции обмена веществ:

  • щитовидная железа регулирует окислительные процессы, влияя на рост и развитие организма;
  • надпочечники регулируют углеводный, жировой и белковый обмен (способствуют превращению белков в углеводы), регулируют обмен воды и солей.

Нарушения регуляции обмена веществ вызывают различные заболевания.

Источник