В каких продуктах содержится дезоксирибоза
Тема урока
«Пентозы. Рибоза и дезоксирибоза как представители альдопентоз».
Ход урока:
1. Организационный момент
Приветствие. Отметка отсутствующих. Проверка готовности к уроку. Подготовка к работе.
Здравствуйте! На предыдущих уроках мы изучали моносахариды — гексозы. Но мир моносахаридов очень многообразен и кроме гексоз большое значение имеют пентозы.
2. Создание мотивации к изучению темы
Сегодня нам предстоит познакомиться с:
— классификацией пентоз,
— физическими свойствами,
— особенностями строения альдопентоз,
— биологической ролью пентоз в организме человека.
3. Повторение опорных знаний
Прежде чем перейти к изучению новой темы, вспомним, что мы изучали на прошлых занятиях.
Повторим следующие понятия: моносахариды, гексозы, альдогексозы, кетогексозы.
Студенты дают определения понятиям.
Моносахариды – это простые углеводы, не подвергающиеся гидролизу.
Гексозы — это моносахариды, содержащие 6 атомов углерода.
Альдогексозы – это гексозы, содержащие функциональную группу альдегидов.
Кетогексозы– это гексозы, содержащие функциональную группу кетонов.
Теперь необходимо ответить на следующие вопросы:
Задаются вопросы.
— Какие вещества относят к углеводам?
Предполагаемый ответ: глюкоза, фруктоза, лактоза, крахмал, целлюлоза, мальтоза, рибоза.
— Что служит источником углеводов?
Предполагаемый ответ: источником углеводов являются растения, в листьях которых под действием солнечной энергии протекает фотосинтез.
— Какие углеводы относят к моносахаридам?
Предполагаемый ответ: глюкоза, фруктоза.
— К каким классам веществ относится глюкоза по своему химическому строению?
Предполагаемый ответ: глюкоза относится к альдегидоспиртам.
— Перечислите известные вам процессы брожения глюкозы.
Предполагаемый ответ: спиртовое, молочнокислое, маслянокислое брожение.
— Какова роль глюкозы в жизни живых организмов?
Предполагаемый ответ: является источником энергии.
4. Изучение нового материала
Молекулы моносахаридов могут содержать от трех до десяти атомов углерода.
Ребята, давайте вспомним классификацию моносахаридов в зависимости от числа атомов углерода в молекуле.
Один студент выходит к доске и записывает в виде схемы классификацию моносахаридов.
Задаются вопросы.
— Какие моносахариды из этой классификации вы уже изучали?
Предполагаемый ответ: гексозы.
— Каков химический состав гексоз? Напишите формулу.
Предполагаемый ответ: С6Н12О6.
— Приведите примеры гексоз, которые мы изучали.
Предполагаемый ответ: глюкоза, фруктоза.
Объяснение схемы.
К триозам относятся молочная и пировиноградная кислоты, участвующие в процессах брожения и окисления, происходящих в живых организмах.
К тетрозам в первую очередь относится эритроза, активно участвующая в протекающих в организме процессах обмена веществ, она является посредником прежде всего в процессах фотосинтеза и выпрямляет кольцевидную форму молекул углеводов.
Сегодня мы будем изучать пентозы.
Задается вопрос.
— Каков химический состав пентоз? Напишите формулу.
Предполагаемый ответ: С5Н10О5.
Из пентоз состоят клетки животных и растительных организмов — это рибоза и дезоксирибоза. Они входят в состав нуклеиновых кислот: рибоза входит в состав рибонуклеиновой кислоты (РНК), дезоксирибоза – дезоксирибонуклеиновой кислоты (ДНК)
Итак, сформулируйте тему урока.
Студенты формулируют тему урока.
Тема урока: «Пентозы. Рибоза и дезоксирибоза как представители альдопентоз».
Все пентозы в зависимости от наличия кето- или альдогруппы делятся на кетопентозы (рибулоза, ксилулоза) и альдопентозы (рибоза, арабиноза, ксилоза, ликсоза).
Запись схемы на доске.
Объяснение схемы.
Изомер рибозы — рибулоза в виде фосфорного эфира участвует в обмене углеводов.
В растениях в обмене углеводов участвует и ксилулоза в виде фосфорного эфира.
Наибольший интерес представляют альдопентозы.
Рибоза играет очень важную роль в живых организмах. Она входит в состав РНК, нуклеотидов, витаминов, коферментов. Ее фосфорные эфиры участвуют в обмене углеводов.
Задается вопрос.
— Какие функциональные группы входят в состав альдопентоз?
Предполагаемый ответ: группы альдегидов и спиртов.
— Как с помощью качественных реакций подтвердить наличие функциональных групп в альдопентозах?
Предполагаемый ответ: реакция серебряного зеркала (альдегидная группа), реакция со свежеприготовленным гидроксидом меди (11) (спиртовая группа).
Для выяснения особенностей свойств и строения рибозы и дезоксирибозы заполним таблицу, используя опорный конспект, который у каждого на парте (Приложения А, Б).
№ п/п | Признак | Рибоза | Дезоксирибоза |
1 | Кем и когда открыто вещество | 1905 г. | Фибус Ливен, 1929 г. |
2 | Физические свойства | Бесцветные кристаллы, легко растворимые в воде и имеющие сладкий вкус. | Бесцветное кристаллическое вещество, хорошо растворимое в воде. |
3 | Формула | C5H10O5 | C5H10O4 |
4 | Ациклическая форма | ||
5 | Циклическая форма | ||
6 | Нахождение в природе | — Не встречается в свободном виде; — составная часть олиго- и полисахаридов; — находится в коже и слюнных железах животных; — входит в состав РНК (рибонуклеиновых кислот), — витамина В2; — компонент АТФ (аденозинтрифосфорной кислоты). | — Не встречается в свободном виде. — составная часть нуклеопротеидов, которыми богаты мясные и рыбные продукты; — входит в состав ДНК (дезоксирибонуклеиновых кислот). |
7 | Биологическая роль | Перенос информации и энергии, а также некоторых коферментов и бактериальных полисахаридов. Участвует в синтезе белков и передаче наследственных признаков. | Для синтеза нуклеиновых кислот. Она является составным компонентом нуклеотидных коферментов, играющих важную роль в метаболизме живых существ. Участвуют в синтезе белков и передаче наследственных признаков. |
8 | Применение | Рибоза выпускается в виде отдельной спортивной пищевой добавки. | Нет информации по применению. |
Объяснение таблицы.
Особенности рибозы и дезоксирибозы.
Состав дезоксирибозы не отвечает формуле Сn(Н2О)m, считавшейся общей формулой всех углеводов.
Дезоксирибоза отличается от рибозы отсутствием в молекуле одной гидроксильной группы (оксигруппы), которая заменена атомом водорода. Отсюда и произошло название вещества (дезоксирибоза).
Структурные формулы точно указывают, при каком именно атоме углерода дезоксирибозы нет гидроксильной группы.
Подобно глюкозе молекулы пентоз существуют не только в альдегидной, но и в циклической форме. Замыкание кольца в них можно представить аналогичным образом. Отличие будет лишь в том, что карбонильная группа взаимодействует с гидроксилом не пятого, а четвертого атома углерода, и в результате перегруппировки атомов образуется не шестичленный, а пятичленный цикл.
5. Закрепление знаний
Студенты выполняют тест. Приложение А.
Студенты обмениваются тетрадями и сверяют свои ответы с верными, которые записаны на доске. Выставляют оценки друг другу.
Ответы к тесту.
1) Б,
2) В, Г,
3) А, Д,
4) А,
5) А.
6. Подведение итога урока
На этом уроке вы рассмотрели тему «Пентозы. Рибоза и дезоксирибоза как представители альдопентоз». В ходе занятия вы смогли углубить свои знания об углеводах, узнали об особенностях строения рибозы и дезоксирибозы, а также об их биологической роли в организме человека.
Оценивание работы студентов. Выставление оценок.
7. Домашнее задание
Объяснение выполнения домашнего задания.
Подготовить сообщение на тему «Состав нуклеиновых кислот РНК и ДНК».
ПРИЛОЖЕНИЕ А
РИБОЗА
Рибоза — моносахарид из группы пентоз; бесцветные кристаллы, легко растворимые в воде и имеющие сладкий вкус. Открыта в 1905 году. Её формула С5Н10О5.
Содержание в природе
Моносахариды с пятью атомами углерода и пятью атомами кислорода не встречаются в природе в свободном виде, но являются важными составными частями олиго- и полисахаридов, содержащихся, например, в древесине.
В форме белковых соединений рибоза находится в коже и слюнных железах животных.
Она является основой рибонуклеиновой кислоты (РНК), а также основным ингредиентом, используемым организмом для создания молекулы АТФ.
Рибоза является неотъемлемой частью витамина В2 и нуклеотидов.
Биологическая роль
Рибоза входит в состав рибонуклеиновых кислот (РНК), нуклеозидов, моно- и динуклеотидов, осуществляющих в клетках перенос информации и энергии, а также некоторых коферментов и бактериальных полисахаридов.
Применение
Дополнительное употребление рибозы существенно помогает восстановлению в сердечной мышце и скелетной мускулатуре энергетических запасов, утраченных в ходе изнурительных тренировок, при тяжелой физической работе или при ишемических состояниях, когда сокращается поступление кислорода в ткани. Такое сильное влияние рибозы обусловлено тем, что в тканях недостает ферментов, необходимых для ее быстрого синтеза, когда в этом есть потребность. Восполнение энергетических запасов замедляется, когда расходуются большие количества АТФ. В результате запасы АТФ и других соединений, необходимых для его замещения, уменьшаются. Все это объясняет, почему атлеты чувствуют себя уставшими в течение нескольких дней после интенсивной тренировки.
С недавних пор рибоза стала выпускаться в виде отдельной спортивной пищевой добавки, которая может быть представлена в форме порошка или в жидкой форме. Несмотря на всю пользу этого вещества, рибозу рекомендуют принимать в комплексе с другими спортивными добавками, так как она способна в разы усилить их действие. Наиболее удачной комбинацией с рибозой считается креатин.
ПРИЛОЖЕНИЕ Б
ДЕЗОКСИРИБОЗА
Дезоксирибоза – моносахарид из группы пентоз, содержащий на одну гидроксильную группу меньше, чем рибоза. Является бесцветным кристаллическим веществом, хорошо растворимым в воде. Химическая формула была открыта в 1929 году Фибусом Ливеном. Её формула С5Н10О4.
Содержание в природе
В свободном виде пентозы в пищевых продуктах не встречаются и поступают в организм человека в составе нуклеопротеидов, которыми богаты мясные и рыбные продукты.
Входит в состав углеводно-фосфатного скелета молекул ДНК (дезоксирибонуклеиновых кислот).
Биологическая роль
Дезоксирибоза используется для синтеза нуклеиновых кислот. Она является составным компонентом нуклеотидных коферментов, играющих важную роль в метаболизме живых существ. Участвуют в синтезе белков и передаче наследственных признаков.
Применение
Возможно применение в качестве пищевой добавки. В научной литературе пока не существует практического руководства по применению этой добавки — то есть, того, как ее использовать, в каких количествах, в какое время и каких результатов следует ожидать.
ПРИЛОЖЕНИЕ В
Тест по теме
«Пентозы. Рибоза и дезоксирибоза как представители альдопентоз».
1) Моносахаридом является:
А) целлюлоза, Б) рибоза, | В) сахароза, Г) крахмал. |
2) Какое из соединений является кетозой?
А) рибоза, Б) глюкоза, | В) фруктоза, Г) рибулоза. |
3) Какое из соединений вступает в реакцию серебряного зеркала?
А) глюкоза, Б) крахмал, | В) фруктоза, Д) дезоксирибоза. |
4) Выберите структурную формулу рибозы:
5) Сколько гидроксильных групп входит в состав дезоксирибозы?
Критерии оценивания.
Верно 5 заданий – оценка «5»;
Верно 4 задания – оценка «4»;
Верно 3 задания – оценка «3»;
Верно 2 задания – оценка «2».
дезоксирибоза, также известный как 2-дезокси-D-рибоза или 2-дезокси-D-эритропентоза — это 5-углеродный моносахарид (пентоза), эмпирическая формула которого C5H10О4. Его структура представлена на рисунке 1 (EMBL-EBI, 2016).
Молекула является компонентом структуры ДНК (дезоксирибонуклеиновая кислота), где она чередуется с фосфатными группами, образуя «скелет» полимера ДНК и связывается с азотистыми основаниями.
Присутствие дезоксирибозы вместо рибозы является разницей между ДНК и РНК (рибонуклеиновая кислота). Дезоксирибоза была синтезирована в 1935 году, но не выделялась из ДНК до 1954 года (Encyclopædia Britannica, 1998).
В дезоксирибозе все гидроксильные группы находятся на одной стороне в проекции Фишера (рисунок 2). D-2-дезоксирибоза является предшественником ДНК нуклеиновой кислоты. 2-дезоксирибоза представляет собой альдопентозу, то есть моносахарид с пятью атомами углерода и с альдегидной функциональной группой..
Следует отметить, что в случае этих сахаров атомы углерода обозначаются апострофом, чтобы отличать их от атомов азота, присутствующих в цепи ДНК. Таким образом, говорят, что дезоксирибозе не хватает OH в углероде C2 ‘.
Циклическая структура дезоксирибозы
Все углеводы циркулируют в водной среде, так как это дает стабильность. В зависимости от их углеродного числа они могут принять структуру, аналогичную фурану или пирану, как показано на рисунке 3 (MURRAY, BENDER, & BOTHAM, 2013).
Дезоксирибоза существует в основном в виде смеси трех структур: линейной формы H- (C = O) — (CH2) — (CHOH) 3-H и двух кольцевых форм дезоксирибофуранозы (C3′-эндо) с кольцом из пяти конечности и дезоксирибопираноза («С2′-эндо») с шестичленным кольцом. Последняя форма является преобладающей, как указано на рисунке 4.
Различия между рибозой и дезоксирибозой
Как следует из названия, дезоксирибоза является дезоксигенированным сахаром, а это означает, что она получается из рибозного сахара потерей атома кислорода..
В нем отсутствует гидроксильная группа (ОН) в углероде C2 ‘, как показано на рисунке 5 (Carr, 2014). Дезоксирибозный сахар является частью цепи ДНК, а рибоза — частью цепи РНК..
Поскольку пентозные сахара, арабиноза и рибоза различаются только по стереохимии при С2 ‘(рибоза представляет собой R, а арабиноза представляет собой L в соответствии с соглашением Фишера), 2-дезоксирибоза и 2-дезоксиарабиноза эквивалентны, хотя последние термин используется редко, потому что рибоза, а не арабиноза, является предшественником дезоксирибозы.
Физико-химические свойства
Рибоза представляет собой белое твердое вещество, которое образует бесцветную жидкость в водном растворе (Национальный центр биотехнологической информации, 2017). Он имеет молекулярную массу 134,13 г / моль, температуру плавления 91 ° C и, как и все углеводы, он очень хорошо растворяется в воде (Royal Society of Chemistry, 2015).
Дезоксирибоза происходит из пентозофосфатного пути из рибозо-5-фосфата энзимами, называемыми рибонуклеотидредуктазами. Эти ферменты катализируют процесс дезоксигенации (СОЕДИНЕНИЕ: C01801, S.F.).
Дезоксирибоза в ДНК
Как упоминалось выше, дезоксирибоза является компонентом цепи ДНК, что придает ей большое биологическое значение. Молекула ДНК (дезоксирибонуклеиновая кислота), является основным хранилищем генетической информации в жизни.
В номенклатуре стандартной нуклеиновой кислоты, нуклеотид ДНК представляет собой молекулу дезоксирибозы с объединенной (обычно аденин, тимин, гуанин или цитозин) на основе органического углерода 1 «рибозы.
5′-гидроксил каждого блока дезоксирибозы заменен на фосфат (который образует нуклеотид), который присоединен к 3′-углероду дезоксирибозы в предыдущем блоке (Крик, 1953).
Для образования нити ДНК в первую очередь требуется образование нуклеозидов. Нуклеозиды предшествуют нуклеотидам. ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота) образованы нуклеотидными цепями.
Нуклеозид образован гетероциклическим амином, называемым азотистым амином и молекулой сахара, которая может быть рибозой или дезоксирибозой. Когда фосфатная группа связана с нуклеозидом, нуклеозид становится нуклеотидом.
Основаниями в нуклеозидных предшественниках ДНК являются аденин, гуанин, цитозин и тимин. Последний заменяет урацил в цепи РНК. Молекулы сахара дезоксирибозы связываются с основаниями в ДНК-предшественниках нуклеозидов.
Нуклеозиды ДНК обозначены аденозином, гуанозином, тимидином и цитозином. Рисунок 6 иллюстрирует структуры ДНК нуклеозидов.
Когда нуклеозид приобретает фосфатную группу, он становится нуклеотидом; Одна, две или три фосфатные группы могут быть присоединены к нуклеозиду. Примерами являются аденин рибонуклеозидмонофосфат (АМФ), аденин рибонуклеозиддифосфат (АДФ) и аденин рибонуклеозидтрифосфат (АТФ).
Нуклеотиды (нуклеозиды, связанные с фосфатом) являются не только основными компонентами РНК и ДНК, но также служат источниками энергии и передатчиками информации в клетках..
Например, АТФ служит источником энергии во многих биохимических взаимодействиях в клетке, ГТФ (гуанозинтрифосфат) обеспечивает энергию для синтеза белка, а циклический АМФ (циклический аденозинмонофосфат), циклический нуклеотид, преобразует сигналы в белки. реакции гормональной и нервной системы (синий, SF).
Для случая ДНК, монофосфат нуклеотиды связаны через связь между углеродом fofodiester 5 «и 3» другого нуклеотида с образованием пряди цепи, как показаны на рисунке-.
Впоследствии цепь, образованная нуклеотидами, соединенными фосфодиэфирной связью, связывается с комплементарной цепью, образуя молекулу ДНК, как показано на рисунке 9..
Биологическое значение дезоксирибозы
Конфигурация цепочки ДНК является очень стабильной, частично из-за стеков молекул дезоксирибозы..
молекулы дезоксирибозы взаимодействуют Ван-дер-Ваальса между ними постоянных дипольных взаимодействий и диполь-индуцированный атомами кислорода гидроксильных групп (ОН), придающих дополнительную устойчивость к нити ДНК
Отсутствие 2′-гидроксильной группы в дезоксирибозе, по-видимому, является причиной большей механической гибкости ДНК по сравнению с РНК, что позволяет ей предполагать конформацию двойной спирали, а также (у эукариот) плотно наматываться внутри ядра клетка.
Молекулы двухцепочечной ДНК также обычно намного длиннее молекул РНК. Основа РНК и ДНК структурно схожи, но РНК является одноцепочечной и состоит из рибозы вместо дезоксирибозы..
Из-за отсутствия гидроксильной группы ДНК более устойчива к гидролизу, чем РНК. Отсутствие частично отрицательной гидроксильной группы также способствует стабильности ДНК на РНК..
Всегда существует отрицательный заряд, связанный с фосфодиэфирными мостиками, которые связывают два нуклеотида, которые отталкивают гидроксильную группу в РНК, делая ее менее стабильной, чем ДНК (Структурная биохимия / Нуклеиновая кислота / Сахары / Дезоксирибоза, сахар, 2016).
Другие биологически важные производные дезоксирибозы включают моно-, ди- и трифосфаты, а также 3′-5′-циклические монофосфаты. Следует также отметить, что смысл нити ДНК обозначается атомами углерода рибозы. Это особенно полезно для понимания репликации ДНК.
Как уже отмечалось, молекулы ДНК являются двухцепочечными, а две цепи антипараллельны, то есть они бегут в противоположных направлениях. Репликация ДНК у прокариот и эукариот происходит одновременно в обеих цепях.
Однако в любом организме нет фермента, способного полимеризовать ДНК в направлении от 3 до 5, так что обе вновь реплицированные цепи ДНК не могут расти в одном и том же направлении одновременно..
Однако один и тот же фермент воспроизводит обе цепи одновременно. Один фермент непрерывно реплицирует цепь («проводящая цепь») в направлении от 5 до 3 с тем же общим направлением продвижения.
Повторно реплицируйте другую цепь («задержанную цепь») при полимеризации нуклеотидов в коротких струях из 150-250 нуклеотидов, снова в направлении от 5 ‘до 3’, но в то же время обращенных к заднему концу РНК. прецедент, а не к нереплицированной части.
Поскольку цепи ДНК антипараллельны, фермент ДНК-полимераза работает асимметрично. В основной цепи (вперед) ДНК синтезируется непрерывно. В задержанном филаменте ДНК синтезируется в короткие фрагменты (1-5 кг оснований), так называемые фрагменты Оказаки.
Несколько фрагментов Оказаки (до 250) должны быть синтезированы последовательно для каждой вилки репликации. Чтобы это произошло, геликаза действует на задержанную цепь, чтобы разматывать дцДНК в направлении от 5 ‘до 3’..
В ядерном геноме млекопитающих, большинство РНК-праймера, в конечном счете удалены как часть процесса репликации, а после репликации митохондриального генома небольшой РНК-часть остается в качестве составной части конструкции замкнутой кольцевой ДНК,.
ссылки
- Синий, М.-Л. (S.F.). В чем разница между нуклеотидом и нуклеозидом? Восстановлено от sciencing.com.
- Карр, С. М. (2014). Дезоксирибоза в сравнении с рибозным сахаром. Получено с mun.ca.
- СОЕДИНЕНИЕ: C01801. (S.F.). Восстановлено из genome.jp.
- Крик, Дж. Д. (1953). Структура для дезоксирибозы нуклеиновой кислоты. природа. Восстановлено от genius.com.
- EMBL-EBI. (4 июля 2016 г.). 2-дезокси-D-рибоза. Восстановлено с ebi.ac.uk.
- Энциклопедия Британника. (1998, 20 сентября). дезоксирибоза. Восстановлено с britannica.com.
- MURRAY, R.K., BENDER, D.A. & BOTHAM, K.M. (2013). Харпер Биохимия 28-е издание. McGraw-Hill.
- Национальный центр биотехнологической информации … (2017, 22 апреля). База данных PubChem Compound; CID = 5460005. Получено из pubchem.ncbi.nlm.nih.gov.
- Королевское химическое общество. (2015). 2-дезокси-D-рибоза. Получено с chemspider.com.
- Структурная биохимия / Нуклеиновая кислота / Сахары / Дезоксирибоза Сахар. (2016, 21 сентября). Получено с wikibooks.org.