В каких органоидах клетки содержатся днк и рнк

В каких органоидах клетки содержатся днк и рнк thumbnail

В каких органоидах клетки содержатся днк и рнк

В каких органоидах клетки содержатся днк и рнк

1. Определение ДНК

Нуклеиновые кислоты представляют собой высокомолекулярные линейные полимеры. Так как содержание нуклеиновых кислот больше всего в ядре, то они получили свое название от латинского слова nucleus («ядро», лат.). Впрочем, нуклеиновые кислоты содержатся не только в ядре, где, безусловно, их больше всего, но и в хлоропластах и митохондриях (рис. 1).

Рис. 1. Органеллы, в которых содержится ДНК

Нуклеиновые кислоты являются биополимерами, которые состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из трех составных частей: из пятиуглеродного сахара – пентозы, из азотистого основания и остатка фосфорной кислоты (рис. 2).

В каких органоидах клетки содержатся днк и рнк

Рис. 2. Нуклеотиды

Сахар, входящий в состав нуклеотида, представляет собой пентозу, то есть он является пятиуглеродным сахаром. В зависимости от вида пентозы (дезоксирибоза или рибоза) различают молекулы ДНК и РНК (рис. 3).

В каких органоидах клетки содержатся днк и рнк

Рис. 3. Химический состав нуклеотидов

Азотистые основания. Во всех типах нуклеиновых кислот: ДНК или РНК, содержатся основания четырех разных видов (рис. 4). В ДНК: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В РНК вместо тимина (Т) урацил (У).

В каких органоидах клетки содержатся днк и рнк

Фосфорная кислота. Нуклеиновые кислоты являются кислотами, потому что в их состав входит остаток фосфорной кислоты. Обратите внимание на то, что остаток фосфорной кислоты присоединен к сахару по гидроксильной группе 3’ и 5’ углеродом атома (рис. 5).

Рис. 5 Фосфодиэфирная связь между отдельными нуклеотидами в цепочке нуклеиновой кислоты

Это очень важно для понимания того, каким образом нуклеотиды образуют нуклеиновую кислоту. Они соединяются друг с другом с помощью т. н. фосфодиэфирной связи.

2. Структура молекулы ДНК

Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.

Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК

В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тиминомгуанином и цитозином

В каких органоидах клетки содержатся днк и рнк

В каких органоидах клетки содержатся днк и рнк

Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозином – три водородные связи.

В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).

Рис. 9. Лауреаты Нобелевской премии «за создание пространственной модели ДНК»

Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.

Эти цепи связаны друг с другом азотистыми основаниями. Если «раскрутить» молекулу ДНК, то она будет напоминать винтовую лестницу. Две цепочки – образованы остатками фосфорной кислоты и пентозы, а перекладины «лестницы» – азотистые основания, которые взаимодействуют друг с другом с помощью водородных связей.

Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

3. Третичная структура ДНК

У всех живых организмов молекула ДНК плотно упакована с образованием сложных трехмерных структур. Нахождение ДНК в суперспирализованном состоянии дает возможность сделать молекулу более компактной (рис. 10).

Рис. 10. Третичная структура ДНК. Сверхплотная упаковка ДНК с белками-гистонами образует хромосому

У всех живых организмов двуспиральная молекула ДНК плотно упакована и образует сложные трехмерные структуры (рис. 11).

Рис. 11. Модели двухцепочечных ДНК

Двухцепочная ДНК бактерий имеет кольцевидную форму и образует суперспираль. Суперспирализация необходима для упаковки громадной по клеточным меркам ДНК в малом объеме клетки.

Например, ДНК кишечной палочки имеет длину более 1 мм, в то время как длина клетки не превышает 5 мкм (в 1 мм = 1000 мкм) (рис. 12).

Рис. 12. ДНК в нуклеоиде бактерий (слева) и в клетках тела человека (справа)

Хромосомы эукариот представляют собой суперспирализованные линейные молекулы ДНК (рис. 13).

Рис. 13. Хромосомы эукариот

В процессе упаковки эукариотическая ДНК обматывает белки – гистоны, располагающиеся вдоль ДНК через определенные интервалы. Эти белки образуют нуклеосомы (рис. 14). Вторым уровнем пространственной организации ДНК является образование хроматина – волокон, из которых состоят хромосомы.

Рис. 14. Третичная структура ДНК

В ядре каждой клетки тела человека, кроме половых клеток, содержится 23 пары хромосом (рис. 15). На каждую из них приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека почти равна двум метрам, а число нуклеотидных пар в ней 3,2 млрд.

Рис. 15. Хромосомы человека. Кариотип мужчины

Читайте также:  В каких препаратах содержится инозин

Так что, если бы молекула ДНК не была организована в плотную структуру, то наша жизнь была бы невозможна геометрически.

4. Функции молекулы ДНК

Функции ДНК – хранение и передача наследственной информации.

Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.

Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.

5. История открытия нуклеиновых кислот

В научной литературе посвященной изучению строению молекулы ДНК, как правило, упоминается Джеймс Уотсон и Френсис Крик (рис. 9).

Но первооткрывателями нуклеиновых кислот был Фридрих Иоганн Мишер (рис. 16), швейцарский ученый, который работал в Германии.

Рис. 16. Первооткрыватель нуклеиновых кислот

В 1869 году Мишер занимался изучением животных клеток – лейкоцитов. Для получения лейкоцитов он использовал гнойные повязки, которые ему доставлялись из больниц. Он брал гной, отмывал лейкоциты и выделял из них белок.

В процессе исследований Мишеру удалось установить, что кроме белков, в лейкоцитах содержится ещё какое-то неизвестное вещество.

Оно выделялось в виде нитевидного или хлопьевидного осадка при создании кислой среды. При добавлении щелочи этот осадок растворялся.

Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов соляной кислотой от них остаются ядра. Он сделал вывод, что в ядрах имеется неизведанное вещество, то есть новое вещество, которое он назвал нуклеином, от слова nucleus – ядро.

Кроме этого, по данным химического анализа Мишер установил, что это новое вещество состоит из углерода, водорода, кислорода и фосфора. Фосфорорганических соединений в то время было известно очень мало, поэтому Мишер пришел к выводу, что открыл новый класс соединений в ядре.

Так в XIX веке стало известно о существовании нуклеиновых кислот, но тогда никто не мог предположить, какая огромная роль принадлежит нуклеиновым кислотам в сохранении разнообразия наследственных признаков организмов.

6. Вещество наследственности

Первые доказательства того, что молекула ДНК заслуживает довольно серьёзного внимания, были получены 1944 году группой бактериологов во главе с Освальдом Эвери. Он много лет изучал пневмококки – микроорганизмы, вызывающие воспаления легких, или пневмонию. Эвери смешивал два вида пневмококков, один из которых вызывал заболевание, а другой – нет. Предварительно болезнетворные клетки убивали, и затем добавляли к ним пневмококки, которые не вызывали заболевание.

Рис. 17. Опыты Эвери и Гриффитса

Результаты опытов были удивительны. Некоторые живые клетки после контакта с убитыми научились вызывать болезнь. Эвери удалось выяснить природу вещества, участвующего в процессе передачи информации от мертвых клеток живым (рис. 17). Этим веществом оказалась молекула ДНК.

7.РНК. Строение РНК

Рибонуклеиновая кислота (РНК) – полимер, мономерами которой являются рибонуклеотиды. Образование полимера происходит так же, как и у ДНК, за счет фосфодиэфирной связи между остатком фосфорной кислоты и рибозой.

В каких органоидах клетки содержатся днк и рнк

Мономеры РНК в составе нуклеотидов содержат пятиуглеродный сахар (пентоза), фосфорную кислоту (остаток фосфорной кислоты) и азотистое основание (см. Рис. 2).

Рис. 2. Строение нуклеотида РНК

Азотистые основания РНК – урацил, цитозин, аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой (см. Рис. 2).

РНК – одноцепочная молекула значительно меньших размеров, чем молекула ДНК.

Молекула РНК содержит от 75 до 10 000 нуклеотидов.

РНК-содержащие вирусы

Рис. 3. РНК-содержащий вирус

Многие вирусы, например вирус гриппа, содержат в качестве единственной нуклеиновой кислоты молекулу РНК (см. Рис. 3). РНК-содержащих вирусов, болезнетворных для человека, больше, чем ДНК-содержащих. Они вызывают полиомиелит, гепатит А, острые простудные заболевания.

Арбовирусы – вирусы, которые переносятся членистоногими. Являются возбудителями клещевого и японского энцефалита, а также желтой лихорадки.

Реовирусы (см. Рис. 4), редкие возбудители респираторных и кишечных заболеваний человека, стали предметом особого научного интереса из-за того, что их генетический материал представлен в виде двухцепочной молекулы РНК.

Рис. 4. Строение реовируса

Также существуют ретровирусы, которые вызывают ряд онкологических заболеваний.

8.Типы РНК

В зависимости от строения и выполняемой функции различают три основных типа РНК: рибосомную, транспортную и информационную (матричную).

В каких органоидах клетки содержатся днк и рнк

1. Информационная РНК

Как показали исследования, информационная РНК составляет 3-5 % от общего содержания РНК в клетке. Это одноцепочная молекула, которая образовывается в процессе транскрипции на одной из цепей молекулы ДНК. Это связано с тем, что ДНК у ядерных организмов находятся в ядре, а синтез белка происходит на рибосомах в цитоплазме, поэтому возникла необходимость в «посреднике». Функцию «посредника» выполняет матричная РНК, она передает информацию о структуре белка из ядра клеток, где находится ДНК, к рибосомам, где эта информация реализуется (см. Рис. 5).

Читайте также:  В какой рыбе больше всего фосфора содержится в

Рис. 5. Матричная РНК (мРНК)

В зависимости от объема копируемой информации, молекула матричной РНК может иметь различную длину.

Большинство матричных РНК существуют в клетке непродолжительное время. В бактериальных клетках существование таких РНК определяется минутами, а в клетках млекопитающих (в эритроцитах) синтез гемоглобина (белка) продолжается после утраты эритроцитами ядра в течение нескольких дней.

2. Рибосомная РНК

Рибосомные РНК (см. Рис. 6) составляют 80 % от всех рибосом, присутствующих в клетке. Эти РНК синтезируются в ядрышке, а в клетке они находятся в цитоплазме, где вместе с белками образуют рибосомы. На рибосомах происходит синтез белка. Здесь «код», заключенный в матричную РНК, транслируется в аминокислотную последовательность молекулы белка.

Рис. 6. Рибосомная РНК (рРНК)

3. Транспортная РНК

Транспортные РНК (см. Рис. 7) образуются в ядре на ДНК, а затем переходят в цитоплазму.

Рис. 7. Транспортная РНК (тРНК)

На долю таких РНК приходится около 10 % от общего содержания РНК в клетке. Они имеют самые короткие молекулы из 80-100 нуклеотидов.

Транспортные РНК присоединяют к себе аминокислоту и транспортируют ее к месту синтеза белка, к рибосомам.

Все известные транспортные РНК за счет комплементарного взаимодействия между азотистыми основаниями образовывают вторичную структуру, по форме напоминающую лист клевера (см. Рис. 8). В молекуле тРНК есть два активных участка – триплет антикодон на одном конце и акцепторный участок, присоединяющий аминокислоту, на другом.

Рис. 8. Строение тРНК («клеверный лист»)

Каждой аминокислоте соответствует комбинация из трех нуклеотидов, которая носит название триплет.

Рис. 9. Таблица генетического кода

Кодирующие аминокислоты триплеты – кодоны ДНК (см. Рис. 9) – передаются в виде информации триплетов (кодонов) мРНК. У верхушки клеверного листа тРНК располагается триплет нуклеотидов, который комплементарен соответствующему кодону мРНК (см. Рис. 10). Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносятся данной тРНК. Он получил название антикодон.

Рис. 10. тРНК

Акцепторный конец является «посадочной площадкой» для определенной аминокислоты.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Гипотеза РНК мира

Концепция РНК мира заключается в том, что когда-то очень давно молекула РНК могла выполнять функцию как молекулы ДНК, так и белков.

В живых организмах практически все процессы происходят благодаря ферментам белковой природы. Белки, однако, не могут самореплицироваться и синтезируются в клетки на основании информации, заложенной в ДНК. Но и удвоение ДНК происходит только благодаря участию белков и РНК. Следовательно, образуется замкнутый круг, из-за которого в рамках теории возникновения жизни спонтанное возникновение такой сложной системы маловероятно.

В начале 1980-х годов в лаборатории ученых Чека и Олтмена (обладатели нобелевской премии по химии) в США была открыта каталитическая способность РНК. РНК-катализаторы были названырибозимами (см. Рис. 11).

Рис. 11. Структура рибозимомолекулы РНК, выполняющей функцию катализа

Оказалось, что активный центр рибосом тоже содержит большое количество рибосомных РНК. Также РНК способны создавать двойную цепочку и самореплицироваться. То есть РНК могли существовать полностью автономно, катализируя метаболические реакции, например синтеза новых рибонуклеатидов, и самовоспроизводясь, сохраняя из поколения в поколение каталитические свойства. Накопление случайных мутаций привело к появлению РНК, катализирующих синтез определенных белков, являющихся более эффективными катализаторами, в связи с чем эти мутации закреплялись в ходе естественного отбора. Также возникли специализированные хранилища генетической информации – молекула ДНК, а РНК стала посредником между ДНК и белками.

Источник

Строение растительной клетки : целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид — главная особенность растительной клетки.

Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Читайте также:  Какое количество бит информации содержится в 1 мбайте

Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.

Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .

Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.

Строение животной клетки

Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки :

1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка;

3) митохондрии — «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к репетитору по биологии, он проконсультирует Вас в режиме онлайн.

Источник