В каких организмах содержится водород

В каких организмах содержится водород thumbnail

Описание

Содержимое в человеческом организме

Биологическая роль

Источники

Суточная потребность

Недостаток и избыток

Токсичность

Описание

(вернуться к оглавлению)

Водород обладает атомом с простейшим строением. Он содержит один электрон и один протон.  В периодической системе элементов водород занимает первое место. Водород – наиболее распространенный элемент во Вселенной, так как его атомы сосредоточены в межзвездном пространстве (88,6% атомов, 11,3% атомов приходится на гелий, и только 0,1% – атомы всех остальных элементов). Это пространство не однородно. Водород сконцентрирован в скопления в виде огромных облаков. Помимо этого, водород составляет больше половины массы солнца и большинства звезд. Водород составляет около 1% от общей массы земной коры.

Простое вещество состоит из молекул Н2. При обычных условиях водород представляет собой бесцветный газ, не имеющий запаха, по свойствам приближающийся к идеальному газу. Межмолекулярные взаимодействия в водороде слабы, и поэтому он имеет очень низкие температуры плавления (-259°С) и кипения (-253°С).

Водород взаимодействует практически со всеми простыми веществами, как с металлами, так и с неметаллами. Способность молекулярного водорода реагировать с другими веществами существенно зависит от температуры. Энергия связи в молекуле Н2 (436 кДж/моль) достаточно велика, это позволяет при комнатной температуре (и в темноте) существовать смесям водорода, например, с кислородом или хлором. Но уже при 200-400°С водород проявляет высокую химическую активность.

Из всех соединений водорода наибольшее значение имеет его оксид Н2О, называемый водой. Общее количество воды на Земле, включая связанную в минералах литосферы и мантии, оценивается в 1,6?106 км3, в том числе пресной воды — 9?107 км3. Вода — непременный участник всех процессов жизнедеятельности. В живых организмах она составляет от 50% до 90% их общей массы.

Пресная вода содержит в среднем 35 г/л растворенных солей. В основном это хлористый натрий NaCL (27 г/л). Установлено, что океанская вода содержит в той или иной форме практически все элементы периодической системы.

Вода обладает уникальной химической связью, которая обуславливает ее уникальные химические свойства – увеличение плотности воды при плавлении. Она обладает значительной способностью реагировать с другими веществами. Вода реагирует со многими простыми веществами, как металлами, так и неметаллами, с оксидами, галогенидами и другими классами веществ. Наконец, вода является прекрасным катализатором большинства окислительно-восстановительных реакций.

Помимо оксида, водород образует еще одно соединение с кислородом – пероксид водорода Н2О2. Возможность его образования и свойства в большей мере определяются свойствами кислорода, чем водорода.

Взаимодействие кислорода и водорода протекает достаточно сложно, при этом скорость взаимодействия сильно зависит от температуры. Вода при непосредственном столкновении молекул Н2 и О2 не образуется. Важно то, что при появлении каждого нейтрального атома водорода образуется не одна, а несколько молекул воды. Взаимодействие водорода и кислорода может происходить не только под воздействием температуры, но и под влиянием катализатора, особенно платины.

Содержание в человеческом организме

(вернуться к оглавлению)

Водород входит в состав почти всех органических соединений, из чего следует, что в организме человека он распространен.  Он входит в состав аминокислот, составных частей белков, представляющих основу жизнедеятельности. Помимо этого, водород является компонентом жиров и углеводов, веществ, обеспечивающих процесс жизнедеятельности живых организмов.

Помимо этого, водород присутствует человеческом организме в виде воды. Вода выступает в качестве главной среды процессов жизнедеятельности. В ней растворяется большинство веществ, участвующих в процессах метаболизма. Ниже указано содержание воды в органах и тканях человека.

Содержание воды в организме человека

Орган, ткань, биологическая жидкость

Содержание воды, %

Головной мозг

83

Спинной мозг

74,8

Почки

82

Сердце

79

Легкие

79

Мышцы

75

Кожа

72

Печень

70

Скелет

46

Желудочный сок

99,5

Слюна

99,4

Плазма крови

92

Моча

83

Желчь

75

Слезная жидкость

99

Биологическая роль

(вернуться к оглавлению)

Как уже было сказано выше, водород входит в состав органических соединений, из которых состоят органические формы жизни. Он входит в состав белков (10%), жиров (4,9%), углеводов (6,18%), нуклеиновых кислот, гормонов, ферментов, витаминов, то есть можно сказать, что водород в той или иной степени важен для всех органов и систем живого организма, и всех, протекающих в них процессов, поддерживающих его жизнедеятельности.

Помимо этого, водород входит в состав воды, которая составляет 60% от массы тела и является основой жизни.  

Источники

(вернуться к оглавлению)

Основными источниками водорода являются вода и пища, состоящая все из тех же органических веществ – белков, жиров, углеводов и других. При попадании в организм эти вещества под действие пищеварительной системы распадаются до мономеров, которые в дальнейшем используются нашим организмом для собственных нужд. В основе этого процесса лежат соединения, в состав которых входит водород.

Суточная потребность

(вернуться к оглавлению)

Суточная потребность водорода не нормируется, но существуют нормы потребления вышеперечисленных органических веществ с пищей, в состав которых входит водород.

Помимо этого, существует суточная норма потребления воды, как необходимого для жизни вещества, она составляет 3 л.

Недостаток и тзбыток

(вернуться к оглавлению)

Вряд ли, представляется возможным оценить, как на организм влияет недостаток или избыток водорода, поскольку он входит в состав почти всех необходимых человеку веществ. Поэтому можно оценивать влияние нехватки или избытка лишь конкретных его соединений.

Особенное значение стоит уделить нехватке воды. Так как вода является основой живого организма, то ее недостаток отрицательно влияет на все происходящие в нем процессы. Недостаток воды приводит к такому патологическому состоянию как обезвоживание, которое может быть смертельно при потере воды 20-25% от общего количества воды в организме. Это может быть вызвано как недостаточным поступлением воды в организм человека, так и чрезмерной ее потерей, в следствии различных физиологических нарушений (например, диарея).

Токсичность

(вернуться к оглавлению)

Сам по себе водород не токсичен, но он является весьма распространенным веществом, входящим в состав множества токсичных химических соединений. Например, водород является частью бензола C6H6, вещества, стоящего на втором месте по токсичности согласно данным Всемирной организации здравоохранения (ВОЗ). Или, например, так называемая тяжелая вода D2O, представляющая собой соединение изотопа водорода дейтерия и кислорода, так же является токсичным веществом.

Читайте также:  В каких растениях содержатся фитоэстрогены

Источник

Водород – элемент VII группы периодической системы с атомным номером 1. Впервые выделен фламандским химиком И. Ван Гельмонтом в XVII в. Изучен английским физиком и химиком Г. Кавендишем в конце XVIII в. Название водорода происходит от греч. hydro genes (порождающий воду).

Водород является одним из самых распространенных элементов во Вселенной. Энергия излучаемая Солнцем рождается в результате реакции слияния четырех ядер водорода в ядро гелия. На Земле водород входит в состав воды, минералов, угля, нефти, живых существ. В свободном виде небольшие количества водорода встречаются в вулканических газах.

Водород – газ без цвета и запаха, не растворяется в воде, образует с воздухом взрывоопасные смеси. Существуют три разновидности водорода: протий, дейтерий и тритий, различающиеся по числу нейтронов. Получают водород при электролизе воды, в качестве побочных продуктов при переработке нефти.

  • Биологическая роль водорода

    Роль водорода в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17% (второе место после кислорода, доля атомов которого равна ~ 52%). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях практически весь водород на Земле находится в виде соединений. Лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объему).

    Содержание водорода в организме взрослого человека составляет около 10% (7 кг на 70 кг массы тела).

    Основная функция водорода – структурирование биологического пространства (вода и водородные связи) и формирование разнообразия органических (биологических) молекул. Водород способен реагировать с электронположительными и электронотрицительными атомами, активно взаимодействовать со многими элементами, проявляя при этом как окислительные, так и восстановительные свойства. В реакциях со щелочными и щелочноземельными металлами водород выступает в качестве окислителя, а по отношению к кислороду, сере, галогенам проявляет восстановительные свойства.

    При потере электрона атом водорода переходит в элементарную частицу — протон. В водном растворе протон переходит в катион гидроксония, который гидратируется тремя молекулами воды и образует гидратированный катион гидроксония H9O4+. В виде этого катиона протоны и находятся в водном растворе.

    В биологических процессах протон играет исключительно важную роль: определяет кислотные свойства растворов, участвует в окислительно-восстановительных превращениях. С участием ионов водорода происходит связывание катионов металлов в биокомплексы, протекают реакции осаждения (напр., образование минеральной основы костной ткани), гидролитический распад липидов, полисахаридов, пептидов.

    В организме человека водород в соединениях с другими макроэлементами образует аминогруппы и сульфгидрильные группы, играющие важнейшую роль в функционировании различных биомолекул. Водород входит в структуру белков, углеводов, жиров, ферментов и других биоорганических соединений, выполняющих структурные и регуляторные функции. Благодаря водородным связям осуществляется копирование молекулы ДНК, которая передает генетическую информацию из поколения в поколение.

    Вступая в реакцию с кислородом, водород образует молекулу воды. Вода – основное вещество, из которого состоит организм. В теле новорожденного человека содержание воды составляет около 80%, у взрослого – 55-60%. Вода принимает участие в громадном количестве биохимических реакций, во всех физиологических и биологических процессах, обеспечивает обмен веществ между организмом и внешней средой, между клетками и внутри клеток. Вода является структурной основой клеток, необходима для поддержания ими оптимального объема, она определяет пространственную структуру и функции биомолекул.

    В биосредах часть воды (около 40%) находится в связанном состоянии (ассоциаты с неорганическими ионами и биомолекулами). Остальная часть, т.е. свободная вода, представляет собой ассоциированную водородными связями подвижную структуру. Между свободной и связанной водой происходит непрерывный обмен молекулами.

    Воду, находящуюся в организме, принято условно разделять на внеклеточную и внутриклеточную. Внеклеточная вода, в свою очередь, это интерстициальная жидкость, окружающая клетки; внутрисосудистая жидкость (плазма крови) и трансцеллюлярная жидкость, которая находится в серозных полостях и полых органах. Накопление воды в организме (гипергидратация), может сопровождаться увеличением содержания воды в межклеточном секторе (отеки), в серозных полостях (водянка) и внутри клеток (набухание). Уменьшение содержания воды в организме (дегидратация), сопровождается снижением тургора, сухости кожи и слизистых оболочек, гемоконцентрацией и гипотензией.

    Существует теория, связанная со структурированным характером воды, о так называемой информационной роли воды в живых системах и наличии у водных растворов структурной памяти.

    Несмотря на то, что вода является одним из главных компонентов человеческого организма, ее роль до настоящего времени недооценена и мало изучена как учеными, так и представителями практической медицины. Между тем, потеря человеком почти всего гликогена и жира или половины белка по своим последствиям для здоровья значат меньше, чем потеря всего 10% воды (тогда как потеря 20% воды приводит к смертельному исходу).

    Потребность человека в воде составляет 1-1,5 мл на Ккал потребляемой пищи, т. е., при энергетической ценности рациона в 2000 Ккал организму требуется от 2 до 3 литров воды в сутки. Около 300-400 мл воды ежедневно образуется в организме человека в результате различных метаболических реакций. Окисление 1 г углеводов приводит к образованию 0,6 г воды, 1,07 г липидов и 0,41 г белков.

     

  • Источник

    Природный водород состоит из смеси двух стабильных нуклидов с массовыми числами 1, 007825 (99, 985 % в смеси) и 2, 0140 (0, 015 %). Кроме того, в природном водороде всегда присутствуют ничтожные количества радиоактивного нуклида — трития 3Н (период полураспада Т1/212, 43 года). Так как в ядре атома водорода содержится только 1 протон (меньше в ядре атома элемента протонов быть не может), то иногда говорят, что водород образует естественную нижнюю границу периодической системы элементов Д. И. Менделеева (хотя сам элемент водород расположен в самой верхней части таблицы). Элемент водород расположен в первом периоде таблицы Менделеева. Его относят и к 1-й группе (группе IА щелочных металлов), и к 7-й группе (группе VIIA галогенов).

    Массы атомов у изотопов водорода различаются между собой очень сильно (в разы). Это приводит к заметным различиям в их поведении в физических процессах (дистилляция, электролиз и др.) и к определенным химическим различиям (различия в поведении изотопов одного элемента называют изотопными эффектами, для водорода изотопные эффекты наиболее существенны). Поэтому в отличие от изотопов всех остальных элементов изотопы водорода имеют специальные символы и названия. Водород с массовым числом 1 называют легким водородом, или протием (лат. Protium, от греческого protos — первый), обозначают символом Н, а его ядро называют протоном, символ р. Водород с массовым числом 2 называют тяжелым водородом, дейтерием (лат Deuterium, от греческого deuteros — второй), для его обозначения используют символs 2Н, или D (читается «де»), ядро d — дейтрон. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым водородом, или тритием (лат. Tritum, от греческого tritos — третий), символ 3Н или Т (читается «те»), ядро t — тритон.

    Читайте также:  В каких продуктах больше содержится цинк

    Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода 1s1. В соединениях проявляет степени окисления +1 и, реже, –1 (валентность I). Радиус нейтрального атома водорода 0, 024 нм. Энергия ионизации атома 13, 595 эВ, сродство к электрону 0, 75 эВ. По шкале Полинга электроотрицательность водорода 2, 20. Водород принадлежит к числу неметаллов.

    В свободном виде — легкий горючий газ без цвета, запаха и вкуса.

    Выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик А. Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 году осуществил синтез воды, а затем и ее анализ, разложив водяной пар раскаленным железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из нее получен.

    В 1787 году Лавуазье пришел к выводу, что «горючий воздух» представляет собой простое вещество, и, следовательно, относится к числу химических элементов. Он дал ему название hydrogene (от греческого hydor — вода и gennao — рождаю) — «рождающий воду». Установление состава воды положило конец «теории флогистона».

    Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году. На рубеже 18 и 19 веков было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1.

    На долю водорода приходится около 1% массы земной коры (10-е место среди всех элементов). В свободном виде водород на нашей планете практически не встречается (его следы имеются в верхних слоях атмосферы), но в составе воды распространен на Земле почти повсеместно. Элемент водород входит в состав органических и неорганических соединений живых организмов, природного газа, нефти, каменного угля. Он содержится, разумеется, в составе воды (около 11% по массе), в различных природных кристаллогидратах и минералах, в составе которых имеется одна или несколько гидроксогрупп ОН.

    Водород как элемент доминирует во Вселенной. На его долю приходится около половины массы Солнца и других звезд, он присутствует в атмосфере ряда планет.

    Водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент — метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом:

    CH4 + H2O = CO + 3H2 и CH4 + 1/2 O2 = CO2 + 2H2

    Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешевой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка с соляной кислотой.

    При обычных условиях водород — легкий (плотность при нормальных условиях 0, 0899 кг/м3) бесцветный газ. Температура плавления –259, 15 °C, температура кипения –252, 7 °C. Жидкий водород (при температуре кипения) обладает плотностью 70, 8 кг/м3 и является самой легкой жидкостью. Стандартный электродный потенциал Н2/Н- в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0 °C растворимость составляет менее 0, 02 см3/мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо — в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143, 06 МДж/кг.

    Существует в виде двухатомных молекул Н2. Константа диссоциации Н2 на атомы при 300 К 2, 56·10-34. Энергия диссоциации молекулы Н2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н2 0, 07414 нм.

    Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин, то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н2 и 25% п-Н2. Физические свойства п- и о-Н2 немного различаются между собой. Так, если температура кипения чистого о-Н2 20, 45 К, то чистого п-Н2 — 20, 26 К. Превращение о-Н2 в п-Н2 сопровождается выделением 1418 Дж/моль теплоты.

    В научной литературе неоднократно высказывались соображения о том, что при высоких давлениях (выше 10 ГПа) и при низких температурах (около 10 К и ниже) твердый водород, обычно кристаллизующийся в гексагональной решетке молекулярного типа, может переходить в вещество с металлическими свойствами, возможно, даже сверхпроводник. Однако пока однозначных данных о возможности такого перехода нет.

    Высокая прочность химической связи между атомами в молекуле Н2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (со взрывом) только с газообразным фтором:

    Читайте также:  В мужской сперме какие гормоны содержаться в

    H2 + F2 = 2HF + Q.

    Если смесь водорода и хлора при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом происходит со взрывом, если в смесь этих газов внести катализатор — металлический палладий (или платину). При поджигании смесь водорода и кислорода (так называемый гремучий газ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде спокойно горит с выделением большого количества теплоты:

    H2 + 1/2O2 = Н2О + 285, 75 кДж/моль

    С остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400 °C в присутствии катализатора — железа:

    3H2 + N2 = 2NH3 + Q.

    Также только при нагревании водород реагирует с серой с образованием сероводорода H2S, с бромом — с образованием бромоводорода НBr, с иодом — с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором, кремнием, фосфором водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.

    При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления –1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН2. Полимерный гидрид алюминия (AlH3)x — один из самых сильных восстановителей — получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием, гафнием и др.) водород образует соединения переменного состава (твердые растворы).

    Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо, никель, свинец, вольфрам, медь и др.). Так, при нагревании до температуры 400-450 °C и выше происходит восстановление железа водородом из его любого оксида, например:

    Fe2O3 + 3H2 = 2Fe + 3H2O.

    Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем. Более активные металлы (в том числе и марганец) до металла из оксидов не восстанавливаются.

    Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это — так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С2Н4, причем образуется этан С2Н6:

    С2Н4 + Н2 = С2Н6.

    Взаимодействием оксида углерода(II) и водорода в промышленности получают метанол:

    2Н2 + СО = СН3ОН.

    В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э’… Н… Э», причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.

    Водород используют при синтезе аммиака NH3, хлороводорода HCl, метанола СН3ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием природных растительных масел получают твердый жир — маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода с водородом используют при сварке.

    Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды — довольно энергоемкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500-600 °C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с ее помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты. Однако после Чернобыльской катастрофы развитие атомной энергетики повсеместно свертывается, так что указанный источник энергии становится недоступным. Поэтому перспективы широкого использования водорода как источника энергии пока сдвигаются по меньшей мере до середины 21-го века.

    Водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий).

    Биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении «узнавания» на молекулярном уровне. Водород (ион Н+) принимает участие в важнейших динамических процессах и реакциях в организме — в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза, в процессах мембранного транспорта. Таким образом, наряду с кислородом и углеродом водород образует структурную и функциональную основы явлений жизни.

    • Некрасов Б. В. Основы общей химии. М., 1973.
    • Жидкий водород. М., 1980.
    • Водород в металлах. М., 1981.

    Источник