В каких органах растений содержатся хлоропласты и почему

В каких органах растений содержатся хлоропласты и почему thumbnail

Хлоропла́сты (от греч. χλωρός — «зелёный» и от πλαστός — вылепленный) — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. У зелёных растений являются двумембранными органеллами[Пр. 1]. Под двойной мембраной имеются тилакоиды (мембранные образования, в которых находится электронтранспортная цепь хлоропластов). Тилакоиды высших растений группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Соединяются граны с помощью ламелл. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, пластидная ДНК, рибосомы, крахмальные зёрна, а также ферменты цикла Кальвина[1].

Происхождение[править | править код]

В настоящее время общепризнано[2] происхождение хлоропластов путём симбиогенеза.
Предполагают, что хлоропласты возникли из цианобактерий, так как являются двумембранным органоидом, имеют собственную замкнутую кольцевую ДНК и РНК, полноценный аппарат синтеза белка (причем рибосомы прокариотического типа–70S), размножаются бинарным делением, а мембраны тилакоидов похожи на мембраны прокариот (наличием кислых липидов) и напоминают соответствующие органеллы у цианобактерий. У глаукофитовых водорослей вместо типичных хлоропластов в клетках содержатся цианеллы — цианобактерии, потерявшие в результате эндосимбиоза способность к самостоятельному существованию, но отчасти сохранившие цианобактериальную клеточную стенку[3].

Давность этого события оценивают в 1 — 1,5 млрд лет[4].

Часть групп организмов получала хлоропласты в результате эндосимбиоза не с прокариотными клетками, а с другими эукариотами, уже имеющими хлоропласты[5]. Этим объясняется наличие в оболочке хлоропластов некоторых организмов более чем двух мембран[Пр. 2]. Самая внутренняя из этих мембран трактуется как потерявшая клеточную стенку оболочка цианобактерии, внешняя — как стенка симбионтофорной вакуоли хозяина. Промежуточные мембраны — принадлежат вошедшему в симбиоз редуцированному эукариотному организму. У некоторых[Пр. 3] групп в перипластидном пространстве между второй и третьей мембраной располагается нуклеоморф, сильно редуцированное эукариотное ядро[6].

Строение[править | править код]

1. наружная мембрана
2. межмембранное пространство
3. внутренняя мембрана (1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом (люменом) внутри
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК

12. пластоглобула (капля жира)

У различных групп организмов хлоропласты значительно различаются по размерам, строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение[7]. В основном хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм.

Оболочка хлоропластов[править | править код]

У различных групп организмов оболочка хлоропластов отличается по строению.

У глаукоцистофитовых, красных, зелёных водорослей[8] и у высших растений оболочка состоит из двух мембран. У других эукариотных водорослей хлоропласт дополнительно окружён одной или двумя мембранами. У водорослей, обладающих четырёхмембранными хлоропластами, наружная мембрана обычно переходит в наружную мембрану ядра.

Перипластидное пространство[править | править код]

Граны[править | править код]

Граны представляют собой стопки дисковидных тилакоидов. Отдельные граны хлоропласта соединятся более длинными ламеллами, которые также называют межграновыми или строматическими тилакоидами. Грановые и межграновые тилакоиды различаются белковым составом.

Пиреноиды[править | править код]

Пиреноиды — центры синтеза полисахаридов в хлоропластах[9]. Строение пиреноидов разнообразно, и не всегда они морфологически выражены. Могут быть внутрипластидными и стебельчатыми, выступающими в цитоплазму. У зелёных водорослей и растений пиреноиды располагаются внутри хлоропласта, что связано с внутрипластидным запасанием крахмала.

Стигма[править | править код]

Стигмы, или глазки, встречаются в хлоропластах подвижных клеток водорослей. Стигмы содержат каротиноиды и состоят из липидных глобул. Располагаются вблизи основания жгутика и вместе с особым вздутием на нём выполняют роль фоторецептора, задействованного в осуществлении клеточного фототаксиса[10].

См. также[править | править код]

  • Фотосинтез
  • Триозофосфатный транслокатор
  • Хромопласты
  • Цианеллы

Примечания[править | править код]

Комментарии[править | править код]

  1. ↑ Хлоропласты организмов, относящихся к группе хромистов, имеют четырёхслойную оболочку. Предполагается, что в истории их возникновения включение одной клетки в состав другой происходило дважды.
  2. ↑ Например, у динофитовых и эвгленовых имеется 3 мембраны, а у охрофитов — 4.
  3. ↑ У криптофитовых, хлорарахниофитовых и некоторых динофитовых.

Примечания[править | править код]

  1. ↑ Тихонов А. Н. Трансформация энергии в хлоропластах — энергопреобразующих органеллах растительной клетки // Соровский Образовательный Журнал. 1996. № 4. С. 24—32
  2. ↑ Карпов, 2001, с. 246.
  3. ↑ Карпов, 2001, с. 249,246.
  4. ↑ Белякова, 2006, с. 35.
  5. ↑ Карпов, 2001, с. 249.
  6. ↑ Карпов, 2001, с. 250.
  7. ↑ Карпов, 2001, с. 235.
  8. ↑ Белякова, 2006, с. 32—34.
  9. ↑ Карпов, 2001, с. 239.
  10. ↑ Карпов, 2001, с. 240.
Читайте также:  Какие вещества содержаться в киви

Литература[править | править код]

  • Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 1. — 320 с. — 3000 экз. — ISBN 5-7695-2731-5.
  • Карпов С.А. Строение клетки протистов. — СПб.: ТЕССА, 2001. — 384 с. — 1000 экз. — ISBN 5-94086-010-9.
  • Lee, R. E. Phycology, 4th edition. — Cambridge: Cambridge University Press, 2008. — 547 с. — ISBN 9780521682770.
  • ХЛОРОПЛАСТЫ // Большая российская энциклопедия. Электронная версия (2017); https://bigenc.ru/biology/text/4694635 Дата обращения: 23.06.2018

Источник

Строение хлоропластов

  • Функции хлоропластов
  • Строение хлорофилла
  • Рекомендованная литература и полезные ссылки
  • Хлоропласты, видео
  • Хлоропласты – двухмембранные органоиды растительных клеток, именно они играют ключевую роль в одном из самых важных биологических процессов в природе – фотосинтезе. В частности именно хлоропласты в процессе фотосинтеза выделяют зеленый пигмент хлорофилл, благодаря которому листья деревьев приобретают зеленый цвет (впрочем, не только листья, но и многие другие представители растительного мира, например водоросли). Какое строение хлоропластов, какие функции и процессы они осуществляются в жизнедеятельности клетки, об этом читайте далее.

    Количество хлоропластов в растительной клетке может быть разным, у некоторых водорослей в клетке содержится лишь один большой хлоропласт, часто причудливой формы, в то время как в клетках некоторых высших растений находится множество хлоропластов. Особенно их много в так званных мезофильных тканях листьев, там одна клетка может иметь в себе до сотни хлоропластов.

    Строение хлоропластов

    Устройство хлоропласта включает в себя внутреннюю и внешнюю мембрану, (как и в клетке, они играют роль защитного барьера), межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

    Строение хлоропластов

    Вот так строение хлоропласта выглядит на картинке.

    Как видим с картинки внутри хлоропласта имеется полужидкое пространство, именуемое стромой и приплюснутые диски – это тилакоиды. Последние объединены в стопки, названные гранамы, и сами граны соединены друг с другом при помощи длинных тилакоид, которые называют ламеллами. Именно в тилакоидах находится важный зеленый пигмент – хлорофилл.

    В полужидкой строме хлоропласта находятся его молекулы ДНК и РНК, а также рибосомы, обеспечивающие этому важному органоиду некую автономность внутри клетки. Помимо этого в строме хлоропласта есть зерна крахмала, которые образуются при избытке углеводов, образованных при фотосинтетической активности.

    Функции хлоропластов

    Самая важная функция хлоропласта – это, конечно же, осуществление фотосинтеза. Об этом удивительном процессе на нашем сайте есть отдельная большая статья. Тем не менее, напомним, что при фотосинтезе хлоропластами растительных клеток при помощи солнечного света осуществляется синтез глюкозы из углекислого газа и воды. При этом в качестве важного «побочного продукта» выделяется кислород.

    Основным фотосинтезирующим пигментом в этом процессе является хлорофилл, локализированный в мембранах тилакоидов, именно здесь проходят световые реакции фотосинтеза. Кроме хлорофилла тут же присутствуют ферменты и переносчики электронов.

    Интересный факт: хлоропласты стараются расположиться в клетке таким образом, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету. Или говоря простым языком, хлоропласты в клетке всегда тянутся на свет.

    Строение хлорофилла

    Что же касается строения самого хлорофилла, то он состоит из длинного углеводного хвоста и порфириновой головки. Хвост его гидрофобен, то есть боится влаги, поэтому погружен в тилакоид, головка наоборот любит влагу и находится в жидкой субстанции хлоропласта – строме. Поглощение солнечного света осуществляется именно головкой хлорофилла.

    К слову биологами различается несколько разных видов хлорофилла: хлорофилл a, хлорофилл b, хлорофилл c1, хлорофилл c2 и так далее, все они обладают разным спектром поглощения солнечного света. Но больше всего в растениях именно хлорофилла а.

    Рекомендованная литература и полезные ссылки

    • Белякова Г. А. Водоросли и грибы // Ботаника: в 4 т. / Белякова Г. А., Дьяков Ю. Т., Тарасов К. Л. — М.: Издательский центр «Академия», 2006. — Т. 1. — 320 с. — 3000 экз. — ISBN 5-7695-2731-5.
    • Карпов С.А. Строение клетки протистов. — СПб.: ТЕССА, 2001. — 384 с. — 1000 экз. — ISBN 5-94086-010-9.
    • Lee, R. E. Phycology, 4th edition. — Cambridge: Cambridge University Press, 2008. — 547 с. — ISBN 9780521682770.

    Хлоропласты, видео

    И в завершение образовательное видео по теме нашей статьи.

    В каких органах растений содержатся хлоропласты и почему

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Читайте также:  В каких продуктах содержится гамк

    Источник

    Фотосинтез происходит в эукариотических клеточных структурах, называемых хлоропластами. Хлоропласт — это тип органеллы растительных клеток, известный как зеленые пластиды. Пластиды помогают хранить и собирать необходимые вещества для производства энергии. Хлоропласт содержит зеленый пигмент, называемый хлорофиллом, который поглощает световую энергию для процесса фотосинтеза. Следовательно, название хлоропласт указывает на то, что эти органеллы представляют собой хлорофиллсодержащие пластиды.

    Подобно митохондриям, хлоропласты имеют свою собственную ДНК, ответственны за производство энергии и воспроизводятся независимо от остальной части клетки посредством процесса деления, подобного бактериальному бинарному делению. Они также ответственны за производство аминокислот и липидных компонентов, необходимых для производства хлоропластов. Хлоропласты также встречаются в клетках других фотосинтезирующих организмах, таких как водоросли.

    Хлоропласт: структура

    В каких органах растений содержатся хлоропласты и почему

    Схема строения хлоропласт

    Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:

    • Мембрана — содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя мембрана отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
    • Межмембранное пространство — пространство между внешней и внутренней мембранами.
    • Тилакоидная система — внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
    • Тилакоид с просветом (люменом) — отсек в каждом тилакоиде.
    • Грана — плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
    • Строма — плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
    • Хлорофилл — зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

    Хлоропласт: фотосинтез

    В каких органах растений содержатся хлоропласты и почему

    При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

    Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

    И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.

    Не нашли, то что искали? Используйте форму поиска по сайту

    Источник

    Анонимный вопрос  ·  23 декабря 2018

    16,5 K

    Есть 3 типа пластид: хромопласты, хлоропласты и лейкопласты.

    1. Хромопласты. Благодаря им растения имеют различную окраску, так как в этих структурах находятся пигменты. То есть апельсин имеет оранжевую окраску именно благодаря наличию в его клетках оранжевых хромопластов.
    2. Хлоропласты. Самые важные из пластид, так как в них происходит очень ценный для растений процесс — фотосинтез. Они имеют зеленый пигмент (хлорофилл), благодаря которому и возможен фотосинтез. Не трудно догодаться, что их будет очень много в зеленых частях растения, например, в листьях.
    3. Лейкопласты. В отличии от других пластидов, лейкопласты бесцветные. Их основная функция запасающая, следовательно их будет много в запасающих тканях растений.

    Важная особенность пластид в том, что они могут переходить друг в друга. Например лейкопласты на солнце могут превращаться в хлоропласты.

    Все пластиды состоят из 2 мембран (наружная и внутренняя). Под внутренней мембраной находится строма, в которой упакованы структуры похожие на монетные столбики (тилакоиды). Тилакоиды состоят из гран.

    Читайте также:  В каких продуктах содержится углеводы и жиры полезные

    Эти органеллы также имеют рибосомы и ДНК.

    Кхм. ну если вдаваться в подробности, то пластиды (Хромопласты) многих водорослей содежат по 4 (реже 3)… Читать дальше

    Какие процессы протекают при старении пластмасс?

    Происходят изменения как самой структуры пластмассы, так и ее состава. Различные воздействующие факторы влияют на что-то определенное. Так некоторые виды пластмасс становятся более хрупкими, какие-то меняют цвет или же выделяют какое-либо вещество. Основными процессами будут разрыв цепи молекул полимера или изменение его строения.

    Какая общая характеристика царства грибов?

    Грибы сочетают признаки растений и животных

    • Признаки растений

    1.Поглощение веществ в виде растворов(осмотрофный тип питания).

    2.Не могут активно передвигаться.

    3.Растут на протяжении всей жизни.

    4.Есть клеточная стенка.

    • Признаки животных:

    1)Гетеротрофный тип питания (готовыми органическими веществами).

    2)Нет пластид(хлоропластов), не способны к фотосинтезу.

    3)Наличие углевода хитина. (хитин образует наружный скелет у членистоногих)

    4)Запасные питательные вещества откладываются в виде гликогена.

    5)В обменных реакциях есть мочевина.

    Прочитать ещё 1 ответ

    Что образует внутренняя мембрана хлоропластов?

    Сами по себе хлоропласты — это структуры, в которых происходит процесс фотосинтеза. Эти стркутуры ограничены двумя мембранами — внутренней и внешней, между ними межмембранное пространство 20-30 нм.

    Внутренняя мембрана образует замкнутую область, в которой находится строма пластиды (это структура, аналогичная матриксу митохондрий). В строме также можно выделить два типа внутренних мембран.

    Первый тип образует протяжённые плоские ламеллы стромы, а второй тип — мембраны тилакоидов — образует плоские дисковидные вакуоли или мешки.

    В строме хлоропластов можно обнаружить молекулы ДНК, рибосомы, отложения крахмала в виде крахмальных зёрен.

    Прочитать ещё 1 ответ

    Какие общие признаки характерны для представителей кишечнополостных?

    Студент биофака УрФУ, редактор группы ВК «Эволюция. Жизнь во всех её формах и…  ·  vk.com/lifeoftheearth

    В настоящее время таксон «Кишечнополостные» считается зоологами устаревшим. Эта группа животных разделена на два типа — гребневики (Ctenophora) и стрекающие (Cnidaria). Две эти группы очень близки, их различия рассмотрим чуть позже.

    Что же относится к главным характеристикам группы?

    1) Для этих животных характерна радиальная симметрия (то есть через их тело при поперечном срезе можно провести несколько осей симметрии). Иначе говоря, при радиальной симметрии тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой; тела этих животных можно разделить на несколько секторов. Человек, например, является билатерально симметричным животным, так как через нас можно провести лишь одну ось симметрии — левая и правая половины наших тел являются зеркальными отражениями.

    2) Другой характерной чертой книдарий является чередование двух стадий в жизненном цикле — полипоидной (прикреплённой) и медузоидной (свободно плавающей медузы). Однако необходимо учесть, что чередования нет у гребневиков (всегда плавающие) и класса коралловых полипов (Anthozoa) — эта группа не образует медуз, всегда оставаясь прикреплёнными к субстрату.

    3) Характерной чертой таксона также является наличие двух слоёв тела: внутреннего (энтодерма) и внешнего (экзодерма). Речь, разумеется, идёт не о двух слоях клеток, а о двух слоях тканей, дифференцированных клеток. Кроме того, кишечнополостные имеют мезоглею — рыхлый слой клеток между энто- и эктодермой. И тут возникает то самое отличие гребневиков от книдарий — их мезоглея развита заметно лучше, чем мезоглея книдарий. Мелочи? Только не для зоологов — появление третьего срединного слоя (мезодермы) — это важный ароморфоз, который выведет жизнь на новый уровень.

    4) Дыхание и у книдарий и у гребневиков происходит всей поверхностью тела. Нервная система диффузная, состоит из отдельных рецепторных и нервных клеток, разбросанных по телу. В щупальцах имеются книдоциты – стрекательные клетки, служащие для защиты и добычи пищи.

    На первом рисунке — чудный гребневик с поэтическим названием «пояс Венеры» ( Cestum veneris), на второй — обобщённый жизненный цикл стрекающих.

    что входит в состав ядра? каковы его функции?

    Имею естественно научное образование, в юношестве прикипел к литературе, сейчас…

    Наглядно показано здесь

    Мембрана выполняет функию защиты, плазма служит веществом, в котором находится ядрышко, в котором содержится наследственная информация, а рибосомы синтезируют белок для изменения ДНК.

    Прочитать ещё 1 ответ

    Источник