В каких клетках содержится больше всего митохондрий содержится в клетках

В каких клетках содержится больше всего митохондрий содержится в клетках thumbnail

Анонимный вопрос  ·  23 января 2019

43,8 K

Главная функция митохондрии — выработка энергии, так называемый синтез АТФ (аденозитрифосфата). Нам в школе учитель по биологии говорила, что митохондрии — «энергетичские станции» клетки.

Ещё у митохондрии — важнейшая роль в старении организма, она увеличивает «производство» свободных радикалов, со временем.

Преподаватель биологии в онлайн-школе «Вебинариум» и пуська  ·  vk.com/bio_gis

Митохондрия — компонент всех эукариотических клеток, кроме паразитических простейших и эритроцитов млекопитающих. Считается, что митохондрии имеют симбиотическое происхождение: бактерии, способные к кислородному дыханию, на раннем этапе эволюции вступили в симбиоз с эукариотическими клетками, а затем превратились в полностью несамостоятельные органеллы. Очень много… Читать далее

1.Выроботка инергии, так называемый синтез аденозитрифос (АТФ).
2.Клеточное дыхание.
Взяла в данных ответах потому что сама искала ответ. Думаю будет 5+ ну или просто 5.
Пользуйиесь..????

По русскому языку поможешь ?

Мономер атф является?

Человек науки, полиглот, энтузиаст. Химия, компьютерные технологии, нейропсихоло…

Аденозинтрифосфат (АТФ) — это органическое соединение, которое встречается в клетках и выполняет в ней энергетическую функцию. Молекулы АТФ образуются в митохондриях в процессе клеточного дыхания, они постоянно синтезируются там и распадаются. АТФ сам по себе является мономером, в его состав входят рибоза, аденин и три остатка фосфорной кислоты. Если два из этих остатка отщепить, то получится аденозинмонофосфат (АМФ), который входит в состав РНК, например. Так что из АТФ также получаются многие высокомолекулярные органические соединения.

Будет ли клетка жить, если заменить митохондрию на хлоропласт?

Студентка-биологиня, интересуюсь естественными науками и людьми.

Нет, поскольку митохондрии выполняют основную энергетическую функцию. У растений в том числе, а у животных и подавно. А вот внедрение хлоропластов помимо метахондрий пытаются сделать биотехнологи. Один слизняк так от природы научился, но только эти хлоропласты как бы не входят в одлигатный состав клеток, они могут только накапливаться, полученные от других организмов.

Что содержится в клетках зелёной эвглены?

Эвглена зеленая это организм который относится к эукариотам (то есть у нее есть ядро) , а именно к простейшим, так как состоит всего из одной клетки.

Для нее характерно наличие:

  • Жгутика для передвижения
  • Светочувствительного глазка или стигмы для перемещение к свету
  • Сократительная вакуоль для удаления лишней воды из клетки и жидких продуктов обмена веществ, то есть поддержания осмотического давления
  • Хлоропласты для фотосинтеза, так как эвглена может питаться автотрофно при наличии света и гетеротрофно при отсутствии
  • Ядро (хранение и реализация генетической информации)
  • Запасные питательные вещества

Как биологи объясняют зарождение жизни? Как из неорганических элементов получить делящуюся клетку?

«Биомолекула» — научно-популярный сайт о молекулярных основах современной…  ·  biomolecula.ru

Жизнь возникла на Земле так давно, что сейчас невозможно сказать в точности, как это было. Первые останки жизненных форм обнаружены в породах возрастом 3.5–3.8 млрд лет, и это, бесспорно, микроорганизмы.

Одно из современных определений жизни гласит, что жизнь — это любой стабильно существующий во времени репликатор. Это условие безусловно выполняется для любого микроорганизма, растения, животного (поскольку они размножаются). Но выполняется оно также и для химических самоподдерживающихся систем, воспроизводящих (реплицирующих = самокопирующих) себя. Считается, что первыми формами жизни (добиологическими, т.е. химическими) были органические молекулы, способные воспроизводить себя сами, «копируя» себе подобных, используя себя же в качестве образца (матрицы).

Предположительно, такой древней «первичной» молекулой могла быть РНК (рибонуклеиновая кислота) или близкий по строению и свойствам полимер.

Погрузиться в эту тему подробнее можно в книгах Михаила Никитина «Происхождение жизни. От туманности до клетки» (читайте рецензию на нее на Биомолекуле), Евгения Кунина «Логика случая» или в научно-популярных статьях на Биомолекуле «К вопросу о происхождении жизни» и «РНК у истоков жизни?».

Можно также посмотреть лекцию А. О. Чугунова «Что было в начале», организованную в рамках Клуба нерешенных вопросов Политехнического музея.

Прочитать ещё 3 ответа

Источник

Митохондрии — это универсальные клеточные органеллы, обнаруживаемые почти у всех эукариот (живые организмы, клетки которых содержат ядро). Они критически важны, потому что производят энергию в форме АТФ, питая различные функции клеток (и организм в целом). По этой причине их часто называют «энергетическими станциями» или «фабриками энергии».

↪ Содержание: ↩

Тем не менее, митохондрии — это нечто большее, чем просто «энергетические станции». Ведь именно их появлению внутри клеток мы обязаны такому огромному биоразнообразию животных и растений, которое мы сейчас наблюдаем. Дело в том, что хотя митохондрии и являются неотъемлемой частью клетки, теория симбиогенеза предполагает, что они произошли от бактерий. Захват примитивными клетками (прокариотами) бактерий мог позволить им использовать кислород для генерации энергии, так необходимой для поддержания большого генетического аппарата (для эволюции). Однако несмотря на миллиарды лет совместной эволюции, митохондрии сохранили многие черты самостоятельных организмов: собственная ДНК, и даже свои рибосомы, в которых тоже происходит синтез белка.

Читайте также:  В каких продуктах содержатся углеводы и белки список

Количество митохондрий в клетке широко варьируется в зависимости от вида организма и типа ткани. Отдельная клетка может иметь от одной до нескольких миллионов митохондрий. Например, митохондрии составляют 10% массы человека, однако для некоторых энергоемких тканей и органов эта цифра может достигать 40 процентов.

Не все клетки одинаковые

Клетка может представлять из себя как «кирпичик» многоклеточного организма, так и целый организм. За небольшим исключением, почти все клетки содержат генетический материал (ДНК и РНК), который регулирует метаболизм и синтез белков. Однако не у всех живых организмов клетки организованы одинаково. Поэтому на основании различий в клеточной организации выделяют две группы: эукариоты и прокариоты.

Растения, животные и грибы являются эукариотами и имеют высокоупорядоченные клетки. Их генетический материал упакован в центральное ядро, которое окружено специализированными клеточными компонентами, называемыми органеллами. Органеллы, такие как митохондрии, шероховатый эндоплазматический ретикулум и аппарат Гольджи, работают как хорошо отлаженный конвейер. Одни производят энергию, другие синтезируют и упаковывают белки, третьи транспортируют их в различные части клетки и за ее пределы. Ядро, как и большинство эукариотических органелл, связано мембранами, которые регулируют вход и выход белков, ферментов и другого клеточного материала в органеллу и из нее.

Прокариоты, с другой стороны, являются одноклеточными организмами, такими как бактерии и археи. Прокариотические клетки менее структурированы, чем эукариотические. У них нет ядра. Вместо этого их генетический материал свободно плавает в клетке. У них нет многих мембраносвязанных органелл, обнаруженных в эукариотических клетках, в том числе нет митохондрий.

«Митос» и «хондрос»

В обзоре истории митохондрий за 1981 год, опубликованном в журнале «Cell Biology», авторы Ларс Эрнстер и Готфрид Шатц отмечают, что первое истинное наблюдение за митохондриями было проведено Ричардом Альтманом в 1890 году. Хотя Альтман назвал их «биобластами», их нынешнее название было дано Карлом Бенда в 1898 году. Оно происходит от двух греческих слов: «митос» и «хондрос», означающих нить и гранула. Дело в том, что митохондрии подстраиваются под количество поступаемой и расходуемой энергии. Добиваются они этого слиянием (образуя цепочки) и делением. При нехватке поступающей энергии они сливаются, а при избытке — делятся и утилизируют ее. Длительная фрагментация, как и длительное слияние, влияют на качество митохондрий в клетках их функциональность.

Динамика митохондрий

Здоровые циклы деления и слияния («динамика митохондрий») – залог метаболического здоровья клетки.

Строение митохондрий

Отдельные митохондрии имеют форму капсул с наружной и волнообразной внутренней мембраной, напоминающей выступающие пальцы. Их внутренние мембранные складки называются кристами и служат для увеличения общей площади поверхности. Они окружают матрикс, содержащий ферменты и ДНК. На внутренней мембране также находится система окислительного фосфорилирования, работа которой обеспечивает окисление энергетических субстратов с образованием АТФ.

Митохондрии отличаются от большинства органелл (за исключением хлоропластов растений) тем, что у них есть собственный набор ДНК и генов, которые кодируют белки. По сравнению с кристой внешняя мембрана является более пористой и менее избирательной в отношении того, какие вещества она впускает.

Строение митохондрий

Функции митохондрий

Основная функция митохондрий заключается в том, чтобы метаболизировать и расщеплять углеводы и жирные кислоты для выработки энергии. Эукариотические клетки используют энергию в форме химической молекулы, называемой АТФ (аденозинтрифосфат).

Генерация АТФ происходит в митохондриальном матриксе, но начальные этапы углеводного (глюкозного) метаболизма происходят вне органелл. Согласно второму изданию Джеффри Купера «The Cell: A Molecular Approach», глюкоза сначала превращается в пируват, а затем транспортируется в матрикс. С другой стороны, жирные кислоты попадают в митохондрии как есть.

Если упростить, то можно описать синтез АТФ в три связанных этапа:

  1. Используя ферменты, присутствующие в матриксе, пируват и жирные кислоты превращаются в молекулу, известную как ацетил-КоА;
  2. Ацетил-КоА становится исходным материалом для второй химической реакции, известной как цикл лимонной кислоты или цикл Кребса. Этот шаг производит много углекислого газа и две дополнительные молекулы, НАДН и ФАД, которые богаты электронами;
  3. НАДН и ФАД движутся к внутренней митохондриальной мембране и начинают третий этап: окислительное фосфорилирование. В этой последней химической реакции НАДН и ФАД отдают свои электроны кислороду, что приводит к условиям, подходящим для образования АТФ.

Однако роль «электростанции» — не единственная функция митохондрий. Кроме этого они выполняют:

  • Сигнальные функции. Ацетилирование, ретроградный сигналинг, дифферецировка клеток;
  • Функции синтеза. Синтез стероидов, гема и пуринов;
  • Функции апоптоза и метаболизма кальция. Метаболизм кальция важен для передачи нервных импульсов и т.д.
Читайте также:  Какие кислоты содержатся в крови

Различия в генах митохондрий

В ходе эволюции большая часть генома митохондрий была перенесена в ядро клетки, однако часть мтДНК была сохранена и все еще функциональна. Здесь и обнаруживается основное отличие митохондрии растений и животных, ведь ни смотря на то, что они не различаются по своей базовой структуре, их «остаточные» геномы совершенно разные.

Митохондриальные ДНК растений могут значительно отличаться и достигать 25 миллионов пар оснований, в то время как мтДНК млекопитающих имеют размер приблизительно от 15 000 до 16 000 п. о. (16568 у человека). Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки). Митохондриальный геном растения, хоть и изображен в виде кольца, может принимать альтернативные формы.

Карта митохондриального генома человека

У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид.

Мутации митохондрий

Как мы уже выяснили, митохондрии имеют свой генетический материал в виде кольцевой ДНК (может быть одна или несколько). С возрастом в митохондриальной ДНК накапливаются различные повреждения. Могут быть как точечные мутации, так и крупные повреждения (например, «частая» делеция 4977bp). Когда доля мутантных митохондрий в клетке достигает определенного порога возникает их дисфункция.

Есть несколько теорий почему возникают повреждения в мтДНК.

  • Повреждение свободными радикалами;
  • Ошибки репликации, клональная экспансия. Еще на этапе оплодотворения яйцеклетки могут передаваться мутантные митохондрии, количество которых увеличивается с возрастом;
  • «Войны» митохондрий между собой и иммунитетом. Эгоистичная мтДНК. Если митохондриальная ДНК выходит из митохондрии, то она является триггером иммунного воздействия.

Мы не сдаем анализы на «здоровость» своих митохондрий, но это не отменяет того факта, что нарушение их работы ведет к различным проблемам со здоровьем. К ним относятся неврологические проблемы, проблемы с сердцем, диабет, ожирение и, банально, ускоренное старение.

Происхождение митохондрий: теория эндосимбионтов

В своей статье 1967 года «О происхождении митозирующих клеток», опубликованной в «Журнале теоретической биологии», ученая Линн Маргулис предложила теорию, объясняющую, как образовались эукариотические клетки вместе с их органеллами. Она предположила, что митохондрии и хлоропласты растений когда-то были свободноживущими прокариотическими клетками, которые были поглощены примитивной эукариотической клеткой-хозяином.

Пути эволюции древнейших эукариот, согласно взглядам Линн Маргулис. Иллюстрация с сайта earthstep.wordpress.com, с изменениями

Гипотеза Маргулиса теперь известна как «теория эндосимбионтов». Деннис Сирси, почетный профессор Массачусетского университета в Амхерсте, объяснил это следующим образом:

«Две клетки начали жить вместе, обмениваясь каким-либо субстратом или метаболитом (продуктом метаболизма, таким как АТФ). Объединение стало обязательным, так что теперь клетка-хозяин не может жить отдельно».

Согласно статье Майкла Грея о эволюции митохондрий, опубликованной в 2012 году в журнале Cold Spring Harbor Perspectives in Biology, Маргулис основывала свою гипотезу на двух ключевых фактах. Во-первых, митохондрии имеют свою собственную ДНК. Во-вторых, органеллы способны транслировать сообщения, закодированные в их генах, в белки без использования каких-либо ресурсов эукариотической клетки.

Секвенирование генома и анализ митохондриальной ДНК установили, что Маргулис была права относительно происхождения митохондрий. Происхождение органеллы было прослежено до примитивного бактериального предка, известного как альфа-протеобактерии.

Несмотря на подтверждение бактериального наследия митохондрий, теория эндосимбионтов продолжает изучаться. «Один из самых больших вопросов сейчас — «Кто является клеткой-хозяином?». Как отмечает Грей в своей статье, остаются вопросы о том, возникли ли митохондрии после возникновения эукариотической клетки (как это было предположено в теории эндосимбионтов) или же возникли митохондрии и клетки-хозяева одновременно.

Источник

Что такое митохондрии и их роль

  • Происхождение митохондрии
  • Строение митохондрии
  • Функции митохондрии
  • Ферменты митохондрий
  • Митохондрии, видео
  • Еще в далеком XIX веке с интересом изучая посредством первых не совершенных еще тогда микроскопов, строение живой клетки, биологи заметили в ней некие продолговатые зигзагоподобные объекты, которые получили название «митохондрии». Сам термин «митохондрия» составлен из двух греческих слов: «митос» – нитка и «хондрос» – зернышко, крупинка.

    Читайте также:  Какие минералы содержатся в свекле

    Что такое митохондрии и их роль

    Митохондрии представляют собой двумембранный органоид эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.

    Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.

    Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.

    митохондрия

    Примерно так выглядит митохондрия.

    Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току цитоплазмы), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.

    Происхождение митохондрии

    Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку. Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества. И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.

    Строение митохондрии

    Митохондрии состоят из:

    • двух мембран, одна из них внутренняя, другая внешняя,
    • межмембранного пространства,
    • матрикса – внутреннего содержимого митохондрии,
    • криста – это часть мембраны, которая выросла в матриксе,
    • белок синтезирующей системы: ДНК, рибосом, РНК,
    • других белков и их комплексов, среди которых большое число всевозможных ферментов,
    • других молекул

    Строение митохондрии

    Так выглядит строение митохондрии.

    Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.

    На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.

    У митохондрий, как впрочем, и у хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.

    Функции митохондрии

    Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием кислорода, а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.

    Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество химических реакций окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.

    Ферменты митохондрий

    Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот

    Митохондрии, видео

    И в завершение интересное образовательное видео о митохондриях.

    В каких клетках содержится больше всего митохондрий содержится в клетках

    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Mitochondria: Structure, Function and Role in the Cell.

    Источник