У каких веществ проявляется свойство анизотропия

Анизотропия (от греч. ánisos — неравный и tróроs — направление), зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии — независимости свойств от направления). Примеры А.: пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль нитки (в этих направлениях прочность ткани наименьшая).
Естественная А. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. А. остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов.
При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1, а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1, б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (a//) и перпендикулярно этой оси (a^) различны по величине и знаку.
Таблица 1. — Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении
α//·106, град-4 | α^·106, град-4 | |
Олово | 30,5 | 15,5 |
Кварц | 13,7 | 7,5 |
Графит | 28,2 | —1,5 |
Теллур | —1,6 | 27,2 |
Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r// и перпендикулярно ей r^.
Таблица 2. — Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м)
Магний | r//·106, ом·см | r^ ом·см |
3,37 | 4,54 | |
Цинк | 5,83 | 5,39 |
Кадмий | 7,65 | 6,26 |
Олово (белое) | 13,13 | 9,05 |
При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая А.). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца, рубина и кальцита) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n// и перпендикулярно ей n ^ равны: n// = 1,64 и n ^ = 1,58; у кварца: n//= 1,53, n ^ = 1,54.
Механическая А. состоит в различии механических свойств — прочности, твёрдости, вязкости, упругости — в разных направлениях. Количественно упругую А. оценивают по максимальному различию модулей упругости. Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).
Таблица 3. — Главные значения модулей упругости некоторых кубических кристаллов
Алмаз | 95 | 39 | 49 |
Алюминий | 10,8 | 6,2 | 2,8 |
Железо | 24,2 | 14,6 | 11,2 |
Для кристаллов более сложной структуры (более низкой симметрии) полное описание упругих свойств требует знания ещё большего числа значений (компонент) модулей упругости по разным направлениям, например для цинка или кадмия — 5, а для триглицинсульфата или винной кислоты — 13 компонент, различных по величине и знаку. Об А. магнитных свойств см. подробнее в статье Магнитная анизотропия.
Математически анизотропные свойства кристаллов характеризуются векторами и тензорами, в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество) является вектором. Электрическое сопротивление, диэлектрическая проницаемость, магнитная проницаемость и теплопроводность — тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество) — тензор третьего ранга, упругость — тензор четвёртого ранга. А. графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2—5).
Поликристаллические материалы (металлы, сплавы), состоящие из множества кристаллических зёрен (кристаллитов), ориентированных произвольно, в целом изотропны или почти изотропны. А. свойств поликристаллического материала проявляется, если в результате обработки (отжига, прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает А. (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15—20% (до 65%).
Причиной естественной А. является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы). А. может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная А. некоторых жидкостей, особенно А. жидких кристаллов. В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.
А. наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм2. Искусственную А. можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём А., которая влечёт за собой упрочнение стекла.
Искусственная оптическая А. возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон—Мутона эффект), механического воздействия (см. фотоупругость).
М. П. Шаскольская.
А. широко распространена также в живой природе. Оптическая А. обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.
В ботанике А. называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.
Лит.: Бокий Г. Б., Флинт Е. Е., Шубников А. В., Основы кристаллографии, М.—Л., 1940; Най Дж., Физические свойства кристаллов…, пер. с английского, 2 изд., М., 1967; Волокнистые композиционные материалы, пер. с английского, М., 1967; Дитчберн Р., Физическая оптика, пер. с английского, М., 1965.
Рис. 1. Изменение формы кристаллического шара (пунктир) при нагревании.
Рис. 4. Сечения поверхности модуля кручений (а) и модуля Юнга (б) кристалла кварца; сечение поверхности пьезоэлектрического коэффициента в кварце (в).
Рис. 3. Сечения поверхностей коэффициентов упругости кристалла сегнетовой соли.
Рис. 5. Поверхность коэффициентов разрывной прочности кристалла каменной соли.
Рис. 2. Сечение поверхности скоростей упругих волн кристалла бромистого калия.
Оглавление
Анизотропия и металлография
Анизотропия (от др. uреч. ἄνισος — неравный и τρόπος — направление) — зависимость свойств материала (например, механических: предела прочности, относительного удлинения, твердости, износостойкости и др.) от направления внутри этого материала. Если материал изотропен, то его свойства одинаковы во всех направлениях.
Металлография тесно связана с вопросами анизотропии. По некоторым свойствам материал может быть изотропен, по другим — анизотропен. Материалы могут отличаться степенью анизотропии. Вопрос анизотропности материала связан с выбором направления внутри этого материала. В одном направлении материал может рассматриваться как анизотропный, в других – как изотропный. Анизотропия в металлографии может рассматриваться на разных масштабных уровнях. Например, на микроуровне (внутри зерна) материал может быть анизотропен, а на другом — изотропен (например в объеме образца).
Анизотропия может быть разделена на естественную и искусственную.
Примером естественной анизотропии на микроуровне является анизотропия элементарной кристаллической ячейки. Если рассматривать отдельные направления внутри элементарной ячейки, то проявляется анизотропия: различные направления имеют различные свойства на масштабном уровне, определяющемся размерами кристаллической решетки. В качестве примера можно привести монокристалл медного купороса (рис.1). Степень анизотропии кристаллов кубической сингонии гораздо выше. Если рассматривать направления осей x, у и z, то монокристалл поваренной соли изотропен (рис.1б). Овализованный кристалл поваренной соли имеет изотропную форму.
Рисунок 1. Гидратированные кристаллы медного купороса (а); естественный и овализованный кристаллы хлорида натрия (б).
Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия. Например, усилие сдвига, скорость роста или растворения кристалла зависят от направления. Пример анизотропной структуры электролитического покрытия меди представлен на рис. 2. Кристаллиты покрытия растут на подложке в определенном направлении и все они ориентированы в пространстве одинаково. Скорость роста кристаллов максимальна в направлении, перпендикулярном подложке.
Рисунок 2. Структура электролитического покрытия меди.
Молекулярные кристаллы (белки или полимеры) также являются анизотропными объектами. Изделия, созданные на основе полимеров могут быть как анизотропными (например искусственные нити для производства тканей), так и изотропными (изделия, получаемые при горячем формообразовании полимерных порошков). Сам порошок (рис.3) можно считать изотропным.
Рисунок 3. Порошок политетрафторэтилена; освещение по методу темного поля.
Помимо белков, естественная анизотропия свойственна другим материалам биологического происхождения. Например: слюда, костные и мышечные ткани человека и животных, древесина и листья, трава и т.д.
Анизотропия материалов связана либо с естественной анизотропией материала, либо создается искусственно для придания материалу определенных свойств. Поликристаллические материалы (металлы, сплавы) принято считать изотропными, поскольку кристаллиты, составляющие металл, ориентированы хаотично относительно внешних и внутренних направлений в материале. Анизотропия в металлических материалах создается искусственно. Это, например, специальные условия кристаллизации (рис.4) (направленный теплоотвод). На рис.4а показана структура литой меди; кристаллиты вытянуты в направлении теплоотвода. Структура на рис.4б не имеет направленности. Анизитропную структуру можно получить при деформации — прокаткой и волочением. Например, на рис.5а показана структура прокатанной стали. Видны полосы перлита (темные), вытянутые вдоль направления деформации. Структура, показанная на рис.5б тоже состоит из перлита и феррита, но такую структуру можно считать изотропной, потому что феррит и перлит равномерно распределены в объеме стали. Сам перлит анизотропен, потому что имеет пластинчатое строение (в противоположность зернистому перлиту, который является изотропным).
Анизотропия, созданная тпластической деформацией, сохраняется в изделии или материале после прекращения воздействия и определяет комплекс его физико-механических свойств. Например, после холодной прокатки на 90% и отжига при 8000С медь имеет различное относительное удлинение: вдоль направления деформации – 40%, под углом 450 к направлению деформации – 75%.
Рисунок 4. Макроструктура литья: а – анизотропия макроструктуры меди за счет направленного теплоотвода; б – изотропная структура меди, формирующаяся при равномерном теплоотводе.
Рисунок 5. Анизотропия структуры углеродистой стали, созданная холодной прокаткой (а), и однородная структура, полученная нормализацией (б).
Композиционные материалы представляют собой искусственные анизотропные материалы, созданные, как правило, из двух и более материалов, часто различной природы. Композиционный материал состоит из армирующего прочного материала (как правило анизотропного) и связующего изотропного вещества с более низкими свойствами. Часто в качестве армирующего элемента используются высокопрочные волокна – графитовое или борное волокно, стекловолокно и т.д. (рис.6 а). Понятно, что в продольном сечении материал можно рассматривать как анизотропный (рис. 6 б), в поперечном сечении – как изотропный, т.к. сечение волокна сферическое (рис. 6в). Из элементарных соображений понятно, что свойства композиционного материала вдоль волокна будут существенно отличаться от свойств в поперечном направлении. Этот случай анизотропии представляет собой частный случай анизотропии под названием ортотропия (от др. греч. ὀρθός — прямой и τρόπος — направление) —различие свойств материала по взаимно перпендикулярным направлениям.
Рисунок 6. Анизотропия композиционных материалов: а – борное волокно; б – волокно в составе композита, продольное сечение материала; в – поперечное сечение материала.
Щербина Владислав
Мастер
(1008)
12 лет назад
АНИЗОТРОПИЯ (от греч. anisos — неравный и tropos — направление) , зависимость свойств вещества от направления. Анизотропия характерна, например, для механических, оптических, магнитных, электрических и др. свойств кристаллов, т. к. обусловлена закономерностью и симметрией их внутреннего строения. (см. Неймана принцип, Симметрии принцип Кюри) . Все кристаллы в отношении хотя бы некоторых своих свойств обязательно анизотропны. Анизотропия является следствием того, что в структуре кристалла в разных направлениях различны расстояния и силы связи между атомами и проявляется тем сильнее, чем ниже симметрия кристаллов.
Не все свойства в кристаллах анизотропны. Некоторые свойства, такие как, например, плотность и удельная теплоемкость, изотропны и не зависят от направления. Изотропные свойства описываются скалярными величинами. В тоже время многие свойства, например, теплопроводность, диэлектрическая восприимчивость, магнитная восприимчивость, показатель преломления света и др. , существенно зависят от направления, по отношению к которому они определены, и описываются тензорными величинами. Если имеется зависимость свойств от направления, то для их описания, которое в общем случае зависит от ориентации системы координат, используют кристаллофизическую систему координат.
Наглядное описание анизотропии некоторых свойств дает построение указательных поверхностей, величина радиус-вектора которых соответствует значению измеряемого свойства в данном направлении.
Естественная анизотропия — наиболее характерная особенность кристаллов. Она проявляется в различии скоростей роста кристаллов в разных направлениях. Именно поэтому кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца, кубики каменной соли, восьмиугольные кристаллы алмаза, разнообразные, но всегда шестиугольные звёздочки снежинок. В случае изотропности скорости роста, кристалл вырастал бы в форме шара.
Механическая анизотропия состоит в различии механических свойств — прочности, твердости, вязкости, упругости — в разных направлениях. Количественно упругую анизотропию оценивают по максимальному различию модулей упругости. Проявлением анизотропии механических свойств являются особенности пластической деформации кристаллов. Кристалл деформируется не по направлению действующей силы, а только в некоторых кристаллографических плоскостях по определенным кристаллографическим направлениям, зависящим от структуры кристалла. Как правило, плоскостями и направлениями скольжения служат плоскости и направления плотнейшей упаковки.
При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решеткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (см. оптическая анизотропия) . Скорость распространения света в кристалле или показатель преломления кристалла различны в различных направлениях. Искусственная оптическая анизотропия возникает в кристаллах и в изотропных средах в результате внешнего воздействия.
Поликристаллы, состоящие из множества кристаллических зерен (кристаллитов) , ориентированных произвольно, в целом изотропны или почти изотропны. В результате внешних воздействий (механической обработки или отжига) может быть искусственно вызвана анизотропия свойств поликристаллического материала, которая проявляется в том случае, когда в результате обработки в нём создается преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура) . Магнитная анизотропия проявляется в поликристаллах, при наличии в них текстуры магнитной или текстуры кристаллографической.
Анизотропия присуща жидким кристаллам, природным и синтетическим полимерным веществам. Анизотропия этих веществ, как и кристаллов, в основном определяется их атомным строением и не обязательно требует различия всех свойств во всех направлениях. Наоборот, допустимо закономерное равенство величины какого-либо свойства для некоторых разных направлений.
Анизотропия наблюдается также и в
Elo4ka21
Гуру
(3276)
12 лет назад
да!
Древесина состоит преимущественно из органических веществ (99% общей массы) . Элементный химический состав древесины разных пород практически одинаков. Абсолютно сухая древесина в среднем содержит 49% углерода, 44% кислорода, 6% водорода, 0,1-0,3% азота. При сжигании древесины остаётся её неорганическая часть — зола. В состав золы входят кальций, калий, натрий, магний и другие элементы. ные химические элементы образуют основные органические вещества: целлюлозу, лигнин и гемицеллюлозы.
Источник: https://www.lesnoymir.com/chemistry.htm