Свойства медианы в прямоугольном треугольнике какой класс

Свойства медианы в прямоугольном треугольнике какой класс thumbnail

Введение

По определению, прямоугольный треугольник – это треугольник, в котором есть прямой угол (см. Рис. 1).

Рис. 1. Прямоугольный треугольник  ()

В прямоугольном треугольнике только один прямой угол. Если бы их было два, то тогда сумма этих двух углов уже была бы равна , а значит, на последний угол пришлось бы , чего в треугольнике быть не может (см. Рис. 2), т. к. по теореме о сумме углов треугольника .

Рис. 2. Не существует треугольника с двумя прямыми углами.

Так что можно говорить только о треугольнике, в котором один прямой угол. Вспомним, что стороны, заключающие прямой угол – катеты, а третья сторона – напротив прямого угла – гипотенуза (см. Рис. 3).

Рис. 3. Катеты и гипотенуза

Теперь вспомним, что такое «свойство». Когда объект нам уже известен и мы пытаемся найти его характеристики, то обнаруженные характеристики и являются свойствами данного объекта. Таким образом, нам будет дан треугольник с прямым углом, а мы будем из этого делать какие-то выводы.

Свойство 1 (о сумме двух острых углов)

Сумма двух острых углов прямоугольного треугольника равна  (см. Рис. 4).

Рис. 4.

Разберемся, почему речь идет именно об острых углах. Рассмотрим  (см. Рис. 5).

Рис. 5. Прямоугольный

Сумма всех трех углов треугольника . Как мы знаем, один из углов прямоугольного треугольника , значит, сумма оставшихся  . Из этого следует, что они острые: раз их сумма равна , то каждый из них меньше . Получили, что  , то есть свойство доказано.

Свойство 2 (когда прямоугольный треугольник является равнобедренным)

Если в прямоугольном треугольнике один из углов равен , то такой треугольник – равнобедренный.

Доказательство. Пусть  (см. Рис. 6).

Рис. 6. Прямоугольный треугольник с углом

Исходя из первого свойства, . Получаем, что . Тогда треугольник равнобедренный по признаку – углы при основании равны (см. Рис. 7). Значит, катеты равны .

Рис. 7. Углы при основании равны – треугольник равнобедренный

Свойство 3 (катет равен половине гипотенузы, если он лежит против угла Свойства медианы в прямоугольном треугольнике какой класс)

Катет прямоугольного треугольника, лежащий против угла , равен половине гипотенузы (см. Рис. 8).

Рис. 8. Иллюстрация свойства 3

Доказательство. Рассмотрим прямоугольный . Пусть  и . Нужно доказать, что  (см. Рис. 9).

Рис. 9. Иллюстрация к доказательству

Отразим зеркально  относительно катета , полученную вершину назовем  (см. Рис. 10).

Рис. 10. Отражение  относительно катета

Раз треугольник полностью «скопирован», то , . Также заметим, что  – высота и медиана образованного . Раз высота совпала с медианой, значит,  – равнобедренный () (см. Рис. 11).

Рис. 11.  – равнобедренный

Поскольку  – равнобедренный, то . Получили, что в  все углы равны, а значит,  – равносторонний (см. Рис. 12).

Рис. 12.  – равносторонний

Тогда , а, в свою очередь, , то есть , откуда . Что и требовалось доказать.

Свойство 4 (против катета лежит угол Свойства медианы в прямоугольном треугольнике какой класс, если катет равен половине гипотенузы)

Если катет прямоугольного треугольника равен половине гипотенузы, то угол напротив этого катета равен .

Доказательство. Рассмотрим прямоугольный . Пусть  и . Нужно доказать, что  (см. Рис. 13).

Рис. 13. Прямоугольный

Отразим зеркально  относительно катета , полученную вершину назовем . Образовался  (см. Рис. 14).

Рис. 14. Полученный

В  известно, что , , значит,  – равнобедренный. Кроме того, из третьего свойства известно, что . Значит, , а , отсюда . Тогда  – равносторонний (см. Рис. 15).

Рис. 15.  – равносторонний

Из этого следует, что , а тогда , т. к.  – высота, медиана и биссектриса . Что и требовалось доказать.

Доказательство (медиана, проведенная к гипотенузе, равна ее половине).

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна ее половине (см. Рис. 16).

Рис. 16. Иллюстрация к свойству прямоугольного треугольника

Доказательство. Рассмотрим прямоугольный  ,  – медиана. Нужно доказать, что . Удвоим отрезок  – получим точку  () (см. Рис. 17).

Рис. 17.

Соединим точку  с точками  и . Тогда несложно доказать, что  равны по 1 признаку (соответствующие стороны попарно равны, а углы между сторонами равны как вертикальные) (см. Рис. 18).

Рис. 18. Равенство и, и равенство соответствующих элементов

Рассмотрим . .

Теперь рассмотрим  и .  (т. к. ,  – общая,  – треугольники равны по первому признаку). Отсюда следует, что , тогда . Что и требовалось доказать.
Обратное тоже верно: если медиана в треугольнике равна половине стороны, к которой она проведена, то треугольник – прямоугольный.

Примеры

1.         В прямоугольном :  и . Найти угол  (см. Рис. 19).

Рис. 19. Иллюстрация к примеру 1

Решение. По свойству  сумма острых углов прямоугольного треугольника равна , значит, .

Ответ: .

2.         Один из углов прямоугольного  () втрое меньше другого (). Найти острые углы треугольника  и  (см. Рис. 20).

Рис. 20. Иллюстрация к примеру 2

Решение. Ясно, что искомый угол – один из острых. Тогда он может быть меньше либо другого острого, либо меньше прямого, то есть нужно рассмотреть два варианта.

1.         Вариант первый – острый угол втрое меньше прямого. Пусть искомый угол . Тогда . Значит, по свойству 1 .

2.         Вариант второй – один острый угол втрое меньше другого острого угла. Пусть , тогда . По свойству 1 . Значит, , а тогда .

Ответ: 1.  и ; 2.  и .

3.         В прямоугольном треугольнике   катет  см, . Найти катет  (см. Рис. 21).

Рис. 21. Иллюстрация к примеру 3

Читайте также:  Какие полезные свойства холодца

Решение. По свойству , если , то  тоже. Значит,  – равнобедренный (см. Рис. 22), у которого  см.

Рис. 22.  – равнобедренный

Ответ:  см.

4.         В прямоугольном треугольнике  () гипотенуза , а катет . Найти  (см. Рис. 23).

Рис. 23. Иллюстрация к примеру 4

Решение

Заметим, что . По свойству 4 , т. к. лежит против катета, равного половине гипотенузы. Значит,  по свойству .

Ответ: .

Заключение

На этом уроке мы познакомились с основными свойствами прямоугольных треугольников, мы перечислили их и доказали. Кроме того, были решены задачи с применением рассмотренных свойств.

Список литературы

1. Геометрия. Учебник для 7-9 классов. Атанасян Л.С. и др. – 20-е изд. – М.: Просвещение, 2010. – 384 с.

2. А.Г. Мерзляк. Геометрия 7 класс. – М.: Вентана-Граф, 2015. – 192 с.

3. А.Д. Александров, Геометрия 7 класс. – М.: Просвещение, 2013. – 176 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Инетрнет портал «Я Класс» (Источник)

2. Инетрнет портал «Kursoteka.ru» (Источник)

3. Инетрнет портал «Formula-xyz.ru» (Источник)

Домашнее задание

1. Катет, лежащий против угла в , равен  см. Чему равна гипотенуза этого треугольника?

2. В равнобедренном прямоугольном треугольнике к гипотенузе проведена медиана длиной  см. Найдите гипотенузу.

3. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна  см, один из острых углов треугольника равен . Найдите катет, лежащий против угла .

Источник

В этой статье мы рассмотрим свойства медианы в прямоугольном треугольнике, а также их доказательства.

Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Для прямоугольного треугольника это будут медианы, проведённые с острого угла к серединам катетов или с прямого к центру гипотенузы (рис. 1).

Рисунок 1

Свойства медианы в прямоугольном треугольнике

  1. Медианы в прямоугольном треугольнике пересекаются в одной точке, а точка пересечения делит их в соотношении два к одному считая от вершины, из которой проведена медиана.
  2. Медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
  3. Медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Доказательства свойств

Первое свойство

Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.

Доказательство:

  1. Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).

    Рисунок 2

  2. Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).

    Рисунок 3

  3. Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).

    Рисунок 4

  4. Сторона DE этого четырёхугольника будет средней линией треугольника ABC. Согласно определению: отрезок, соединяющий середины двух сторон треугольника, является его средней линией. При этом по свойству средняя линия параллельна не пересекающейся с ней стороне и равна половине этой стороны, то есть.
    DE || AB и DE = AB / 2.
  5. Аналогично сторона FG треугольника AXB будет его средней линией.
    FG || AB и FG = AB / 2
  6. Отсюда следует, что отрезки DE и FG являются параллельными и равными. Следовательно, четырехугольник DFGE – параллелограмм (по признаку параллелограмма).
  7. Так как диагонали параллелограмма в точке пересечения делятся пополам, то
    FX=XE, GX=XD

    Рисунок 5

  8. Так как AF = FX (по построению), то и AF = FX = XE, аналогично DX = XG = GB.
  9. Получается, что точка X делит обе медианы AE и BD в соотношении 2 к 1 считая от вершины треугольника.
  10. Аналогично, мы сможем доказать, что точка пересечения 3-ей медианы, проведенной из прямого угла к гипотенузе, с медианой AE (или BD) будет делить ее в соотношении 2 к 1, считая от вершины. То есть наша 3-я медиана также пройдет через точку X. Отсюда следует, что все 3 наши медианы пересекаются в одной точке.

Что и требовалось доказать.

Второе свойство

Доказать, что медиана, проведённая с вершины прямого угла к гипотенузе, равна половине гипотенузы.

Доказательство:

  1. Чтобы доказать это свойство рассмотрим прямоугольный треугольник ABC и проведём медиану к гипотенузе. Точку ее пересечения с гипотенузой обозначим буквой D (рис. 6).

    Рисунок 6

  2. Отразим симметрично наш треугольник ABC относительно отрезка AB (рисунок 7). В результате получим четырёхугольник AEBC, в котором AD=DB (поскольку CD медиана к стороне AB) и CD=DE (по построению). То есть диагонали четырехугольника AEBC пересекаются и точкой пересечения делятся пополам. Отсюда следует, что AEBC является параллелограммом (по признаку параллелограмма).

    Рисунок 7

  3. Один из признаков прямоугольника говорит о том, что параллелограмм является прямоугольником, если хотя бы один из его углов прямой. Поскольку ∠ACB прямой (по построению), то AEBC — прямоугольник.
  4. Поскольку диагонали прямоугольника равны и в точке пересечения делятся пополам (свойство прямоугольника), то AB = CE и AD = DB = CD = DE.

    Рисунок 8

  5. Так как AB = AD + DB, AD = BD и СD = AD = BD, то получается, что медиана AD, проведенная к гипотенузе AB равна половине ее длины.

Что и требовалось доказать.

Третье свойство

Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Доказательство:

  1. Опишем вокруг прямоугольного треугольника ABC окружность.

    Рисунок 9

  2. Поскольку точка C уже лежит на окружности, то для того, чтобы доказать, что медиана CM является радиусом, нам надо доказать, что точка M – центр описанной окружности (т.е. равноудалена от нее).
  3. Так как медиана делит отрезок пополам, а медиана проведенная к гипотенузе равна ее половине (согласно доказанному выше свойству), то точка M будет равноудалена от всех вершин треугольника, которые в свою очередь касаются окружности (рисунок 8).
  4. Отсюда следует, что окружность, описанная вокруг прямоугольного треугольника ABC будет иметь центр на середине гипотенузы (в точке M), а медиана CM будет радиусом описанной окружности.
Читайте также:  Какой материал обладает наилучшими литейными свойствами

Что и требовалось доказать.

Источник

      Определение. Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Медиана треугольника свойства формулы длина медианы

Рис.1

      Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

      На рисунке 1 медианой является отрезок BD.

      Утверждение 1. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника).

      Доказательство. Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

Медиана треугольника свойства формулы длина медианы

Рис.2

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

      Поскольку отрезок BD является медианой, то

что и требовалось доказать.

      Утверждение 2. Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1, считая от вершины треугольника.

      Доказательство. Рассмотрим две любых медианы треугольника, например, медианы AD и CE, и обозначим точку их пересечения буквой O (рис. 3).

Медиана треугольника свойства формулы длина медианы

Рис.3

      Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Медиана треугольника свойства формулы длина медианы

Рис.4

      Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Медиана треугольника свойства формулы длина медианы

Рис.5

      Сторона ED этого четырёхугольника является средней линией в треугольнике ABC. Следовательно,

      Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC. Следовательно,

откуда вытекает, что стороны ED и FG четырёхугольника FEDG равны и параллельны. Следовательно, четырехугольник FEDG является параллелограммомСледовательно, четырехугольник FEDG является параллелограммомСледовательно, четырехугольник FEDG является параллелограммом, а у параллелограмма диагонали в точке пересечения делятся пополаму параллелограмма диагонали в точке пересечения делятся пополаму параллелограмма диагонали в точке пересечения делятся пополам (рис.6).

Медиана треугольника свойства формулы длина медианы

Рис.6

      Таким образом,

| FO | = | OD | ,       | GO | = | OE | .

      Следовательно,

| AF | = | FO | = | OD | ,       | CG | = | GO | = | OE | .

      Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении   2 : 1, считая от вершины треугольника.

      Доказательство завершено.

      Следствие. Все три медианы треугольника пересекаются в одной точке.

      Доказательство. Рассмотрим медиану AD треугольника ABC и точку O, которая делит эту медиану в отношении   2 : 1, считая от вершины A (рис.7).

Медиана треугольника свойства формулы длина медианы

Рис.7

      Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

      Определение. Точку пересечения медиан треугольника называют центроидом треугольника.

      Утверждение 3. Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Медиана треугольника свойства формулы длина медианы

Рис.8

      Доказательство. Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC, равна  площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

Медиана треугольника свойства формулы длина медианы

Рис.9

      Тогда

      В силу утверждения 1,

что и требовалось доказать.

      Утверждение 4. Длина медианы треугольника (рис. 10) вычисляется по формуле:

Медиана треугольника свойства формулы длина медианы

Рис.10

      Доказательство. Воспользуемся теоремой косинусов, примененной к треугольникам DBC и ABD:

      Складывая эти равенства, получим:

что и требовалось доказать.

      Следствие. Длины медиан и длины сторон треугольника связаны формулой

      Доказательство. В силу утверждения 4 справедливы равенства:

      Складывая эти равенства, получим:

что и требовалось доказать.

      Утверждение 5. В параллелограммепараллелограмме сумма квадратов диагоналей равна сумме квадратов сторон.

      Доказательство. Рассмотрим рисунок 11.

Медиана треугольника свойства формулы длина медианы

Рис.11

      Поскольку AO – медиана треугольника ABD, а DO – медиана треугольника ADC, то, в силу утверждения 4, справедливы равенства:

      Следовательно,

d12 = 2a2 + 2b2 – d22,

d22 = 2a2 + 2b2 – d12.

      Складывая эти равенства, получим

что и требовалось доказать.

      Утверждение 6. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы (рис. 12).

Медиана треугольника свойства формулы длина медианы

Рис.12

      Доказательство. Продолжим медиану CO за точку O до точки D так, чтобы было выполнено равенство CO = OD, и соединим полученную точку D с точками A и B (рис. 13).

Медиана треугольника свойства формулы длина медианы

Рис.13

      Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограммапризнака параллелограммапризнака параллелограмма заключаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольникпрямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:

Читайте также:  Каким лечебным свойством обладает клевер

что и требовалось доказать.

      Следствие. Середина гипотенузы прямоугольного треугольника является центром описанной около треугольника окружности (рис. 14).

Медиана треугольника свойства формулы длина медианы

Рис.14

      Утверждение 7. Рассмотрим в пространстве или на плоскости декартову систему координат с началом в точке O и произвольный треугольник ABC. Если обозначить буквой M точку пересечения медиан этого треугольника (рис.15), то будет справедливо равенство

Медиана треугольника свойства формулы длина медианы

Медиана треугольника свойства формулы длина медианы

Рис.15

      Доказательство. По свойствам векторов

      Далее получаем

что и требовалось доказать.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник

У этого термина существуют и другие значения, см. Медиана.

Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Связанные определения[править | править код]

Три медианы, проходящие через общую точку

На рис. справа в треугольнике ABC через точку O проведены 3 медианы: AD, BE и CF. Тогда точка O пересечения 3 медиан разбивает каждую медиану на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем домедианой или предмедианой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем постмедианой.[1]
С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии. Например, в любом треугольнике отношение пред- и постмедианы равно двум.

Свойства[править | править код]

Основное свойство[править | править код]

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника[править | править код]

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой. Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Свойства оснований медиан[править | править код]

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.
  • Теркем доказал теорему Теркема.[2] Она утверждает, что если окружность девяти точек пересекает стороны треугольника или их продолжения в 3 парах точек (в 3 основаниях соответственно высот и медиан), являющихся основаниями 3 пар чевиан, то, если 3 чевианы для 3 из этих оснований пересекаются в 1 точке (например 3 медианы пересекаются в 1 точке), то 3 чевианы для 3 других оснований также пересекаются в 1 точке (т. е. 3 высоты также обязаны пересечься в 1 точке).

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников. Центры описанных окружностей этих шести треугольников лежат на одной окружности, которая называется окружностью Ламуна.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

Бесконечно удаленная прямая — трилинейная поляра центроида

  • Трилинейная поляра центроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения[править | править код]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где  — медианы к сторонам треугольника соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

где  — медианы к соответствующим сторонам треугольника,  — стороны треугольника.

Площадь любого треугольника, выраженная через длины его медиан:

где  — полусумма длин медиан.

См. также[править | править код]

  • Биссектриса
  • Высота треугольника
  • Инцентр
  • Симедиана
  • Центроид
  • Чевиана

Примечания[править | править код]

Литература[править | править код]

  • Ефремов Дм. Новая геометрия треугольника, 1902 год.

Источник