Свойства функции на каком то интервале

Чтобы определить характер функции  и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров  и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Определение 1

Функция y=f(x) будет возрастать на интервале x, когда при любых x1∈X и x2∈X , x2>x1неравенство f(x2)>f(x1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y=f(x) считается убывающей на интервале x, когда при любых x1∈X, x2∈X, x2>x1  равенство f(x2)>f(x1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a;b), где х=а, х=b, точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x.

Основные свойства элементарных функций типа y=sinx – определенность и непрерывность  при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале -π2; π2, тогда возрастание на отрезке имеет вид -π2; π2.

Точки экстремума, экстремумы функции

Определение 3

Точка х0 называется точкой максимума для функции y=f(x), когда для всех значений x неравенство f(x0)≥f(x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается ymax.

Точка х0 называется точкой минимума для функции y=f(x), когда для всех значений x неравенство f(x0)≤f(x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида ymin.

Окрестностями точки х0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [a;b]. Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х=b.

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Определение 4

Пусть задана функция y=f(x), которая дифференцируема в ε окрестности точки x0, причем имеет непрерывность в заданной точке x0. Отсюда получаем, что

  • когда f'(x)>0 с x∈(x0-ε; x0) и f'(x)<0 при x∈(x0; x0+ε), тогда x0 является точкой максимума;
  • когда f'(x)<0 с x∈(x0-ε; x0) и f'(x)>0 при x∈(x0; x0+ε), тогда x0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком, то есть с + на -, значит, точка называется максимумом;
  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком с — на +, значит, точка называется минимумом.

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Пример 1

Найти точки максимума и минимума заданной функции y=2(x+1)2x-2.

Решение

Область определения данной функции – это все действительные числа кроме х=2. Для начала найдем производную функции и получим:

y’=2x+12x-2’=2·x+12’·(x-2)-(x+1)2·(x-2)'(x-2)2==2·2·(x+1)·(x+1)’·(x-2)-(x+1)2·1(x-2)2=2·2·(x+1)·(x-2)-(x+2)2(x-2)2==2·(x+1)·(x-5)(x-2)2

Отсюда видим, что нули функции – это х=-1, х=5, х=2, то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х=-2, х=0, х=3, х=6.

Получаем, что

y'(-2)=2·(x+1)·(x-5)(x-2)2x=-2=2·(-2+1)·(-2-5)(-2-2)2=2·716=78>0, значит, интервал -∞; -1 имеет положительную производную. Аналогичным образом получаем, что

y'(0)=2·(0+1)·0-50-22=2·-54=-52<0y'(3)=2·(3+1)·(3-5)(3-2)2=2·-81=-16<0y'(6)=2·(6+1)·(6-5)(6-2)2=2·716=78>0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий  с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х=-1 функция будет непрерывна, значит, производная изменит знак с + на -. По первому признаку имеем, что х=-1 является точкой максимума, значит получаем

ymax=y(-1)=2·(x+1)2x-2x=-1=2·(-1+1)2-1-2=0

Точка х=5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

ymin=y(5)=2·(x+1)2x-2x=5=2·(5+1)25-2=24

Графическое изображение

Ответ: ymax=y(-1)=0, ymin=y(5)=24.

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x0, этим и упрощает вычисление.

Читайте также:  Какими свойствами обладают пирамиды

Пример 2

Найти точки максимума и минимума функции y=16×3=2×2+223x-8.

Решение.

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

-16×3-2×2-223x-8, x<016×3-2×2+223x-8, x≥0

После чего необходимо найти производную:

y’=16×3-2×2-223x-8′, x<016×3-2×2+223x-8′, x>0y’=-12×2-4x-223, x<012×2-4x+223, x>0

Точка х=0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y’x→0-0=lim yx→0-0-12×2-4x-223=-12·(0-0)2-4·(0-0)-223=-223lim y’x→0+0=lim yx→0-012×2-4x+223=12·(0+0)2-4·(0+0)+223=+223

Отсюда следует, что функция непрерывна в точке х=0, тогда вычисляем

lim yx→0-0=limx→0-0-16×3-2×2-223x-8==-16·(0-0)3-2·(0-0)2-223·(0-0)-8=-8lim yx→0+0=limx→0-016×3-2×2+223x-8==16·(0+0)3-2·(0+0)2+223·(0+0)-8=-8y(0)=16×3-2×2+223x-8x=0=16·03-2·02+223·0-8=-8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

-12×2-4x-223, x<0D=(-4)2-4·-12·-223=43×1=4+432·-12=-4-233<0x2=4-432·-12=-4+233<0

12×2-4x+223, x>0D=(-4)2-4·12·223=43×3=4+432·12=4+233>0x4=4-432·12=4-233>0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x=-6, x=-4, x=-1, x=1, x=4, x=6. Получим, что

y'(-6)=-12×2-4x-223x=-6=-12·-62-4·(-6)-223=-43<0y'(-4)=-12×2-4x-223x=-4=-12·(-4)2-4·(-4)-223=23>0y'(-1)=-12×2-4x-223x=-1=-12·(-1)2-4·(-1)-223=236<0y'(1)=12×2-4x+223x=1=12·12-4·1+223=236>0y'(4)=12×2-4x+223x=4=12·42-4·4+223=-23<0y'(6)=12×2-4x+223x=6=12·62-4·6+223=43>0

Изображение на прямой имеет вид

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x=-4-233, x=0, x=4+233, тогда отсюда точки максимума имеют значениx=-4+233, x=4-233

Перейдем к вычислению минимумов:

ymin=y-4-233=16×3-22+223x-8x=-4-233=-8273ymin=y(0)=16×3-22+223x-8x=0=-8ymin=y4+233=16×3-22+223x-8x=4+233=-8273

Произведем вычисления максимумов функции. Получим, что

ymax=y-4+233=16×3-22+223x-8x=-4+233=8273ymax=y4-233=16×3-22+223x-8x=4-233=8273

Графическое изображение

Ответ:

ymin=y-4-233=-8273ymin=y(0)=-8ymin=y4+233=-8273ymax=y-4+233=8273ymax=y4-233=8273

Второй признак экстремума функции

Если задана функция f'(x0)=0, тогда при ее f»(x0)>0 получаем, что x0 является точкой минимума, если f»(x0)<0, то точкой максимума. Признак связан с нахождением производной в точке x0.

Пример 3

Найти максимумы и минимумы функции y=8xx+1.

Решение

Для начала находим область определения. Получаем, что

D(y): x≥0x≠-1⇔x≥0

Необходимо продифференцировать функцию, после чего получим

y’=8xx+1’=8·x’·(x+1)-x·(x+1)'(x+1)2==8·12x·(x+1)-x·1(x+1)2=4·x+1-2x(x+1)2·x=4·-x+1(x+1)2·x

При х=1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение  при х=1. Получаем:

y»=4·-x+1(x+1)2·x’==4·(-x+1)’·(x+1)2·x-(-x+1)·x+12·x'(x+1)4·x==4·(-1)·(x+1)2·x-(-x+1)·x+12’·x+(x+1)2·x'(x+1)4·x==4·-(x+1)2x-(-x+1)·2x+1(x+1)’x+(x+1)22x(x+1)4·x==-(x+1)2x-(-x+1)·x+1·2x+x+12x(x+1)4·x==2·3×2-6x-1x+13·x3⇒y»(1)=2·3·12-6·1-1(1+1)3·(1)3=2·-48=-1<0

Значит, использовав 2 достаточное условие экстремума, получаем, что х=1 является точкой максимума. Иначе запись имеет вид ymax=y(1)=811+1=4.

Графическое изображение

Ответ: ymax=y(1)=4..

Третье достаточное условие экстремума

Определение 5

Функция y=f(x) имеет ее производную до n-го порядка  в ε окрестности заданной точки x0 и производную до n+1-го порядка в точке x0. Тогда f'(x0)=f»(x0)=f»'(x0)=…=fn(x0)=0.

Отсюда следует, что когда n является четным числом, то x0 считается точкой перегиба, когда n является нечетным числом, то x0 точка экстремума, причем f(n+1)(x0)>0, тогда x0 является точкой минимума, f(n+1)(x0)<0, тогда x0 является точкой максимума.

Пример 4

Найти точки максимума и минимума функции yy=116(x+1)3(x-3)4.

Решение

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y’=116x+13′(x-3)4+(x+1)3x-34’==116(3(x+1)2(x-3)4+(x+1)34(x-3)3)==116(x+1)2(x-3)3(3x-9+4x+4)=116(x+1)2(x-3)3(7x-5)

Данная производная обратится в ноль при x1=-1, x2=57, x3=3. То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y»=116x+12(x-3)3(7x-5)’=18(x+1)(x-3)2(21×2-30x-3)y»(-1)=0y»57=-368642401<0y»(3)=0

Значит, что x2=57 является точкой максимума. Применив 3 достаточный признак, получаем, что при n=1 и f(n+1)57<0.

Необходимо определить характер точек x1=-1, x3=3. Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y»’=18(x+1)(x-3)2(21×2-30x-3)’==18(x-3)(105×3-225×2-45x+93)y»'(-1)=96≠0y»'(3)=0

Значит, x1=-1 является точкой перегиба функции, так как при n=2 и f(n+1)(-1)≠0. Необходимо исследовать точку x3=3. Для этого находим 4 производную и производим вычисления в этой точке:

y(4)=18(x-3)(105×3-225×2-45x+93)’==12(105×3-405×2+315x+57)y(4)(3)=96>0

Из выше решенного делаем вывод, что x3=3 является точкой минимума функции.

Графическое изображение

Ответ: x2=57 является точкой максимума, x3=3 — точкой минимума заданной функции.

Источник



Математика: Свойства функций

Свойства функции разберем на примере о графика произвольной функции y = f (x):

  1. Область определения функции — это множество всех значений переменной x, которые имеют соответствующие им значения функции. Обозначают: D(f).На графике область определения — это промежутки на оси ОX, над которыми (или под которыми) имеются части графика. Для нашего примера D(f) = [-8; 9,4].
  2. Область значений функции — это множество всех ее значений у. Обозначают: E(f).На графике область значений функции — это промежутки на оси OY, слева или справа от которых (в горизонтальной полосе) находятся части графика.Для нашего примера Е(f) = [-4; 4,2].
  3. Функция y = f (x) называется возрастающей, если для любой пары значений аргументов x1, x2 из неравенства x1 < x2 следует неравенство f (x1) < f (x2).Функцию можно назвать возрастающей на промежутке, если большему из любых двух взятых из него чисел всегда соответствует большее значение функции.Для нашего примера функция возрастает при .Функция y = f (x) называется убывающей, если для любой пары значений аргументов x1, x2 из неравенства x1 < x2 следует неравенство f (x1) > f (x2).Функцию можно назвать убывающей на промежутке, если из любых двух взятых из него чисел большему из них всегда соответствует меньшее значение функции.Для нашего примера функция убывает при .
  4. Промежутки знакопостоянства — промежутки, на которых значения функции имеют постоянный знак (положительный или отрицательный).Промежуток положительного знака — это множество значений переменной x, у которых соответствующие значения функции больше нуля (y > 0).На графике — это части оси абсцисс, у которых соответствующие кусочки графика выше оси ОХ. Без графика их тоже можно найти, составив и решив неравенство f (x) > 0.Для нашего примера функция положительна при .Промежуток отрицательного знака — это множество тех значений переменной х, у которых соответствующие значения функции меньше нуля (y < 0).На графике — это промежутки оси абсцисс, у которых соответствующие кусочки графика ниже оси ОХ. Без графика их тоже можно найти, составив и решив неравенство f (x) < 0.Для нашего примера функция отрицательна при .
  5. Нули функции — это значения переменной х, при которых у (х) = 0.Без графика нули функции тоже можно найти, составив и решив уравнение f (x) = 0.По графику нули определяют как абсциссы точек пересечения графика с осью ОХ.Для нашего примера нули функции это точки х1 = -3, х2 = 2, х3 = 5.
  6. Четность и нечетность функции.Функция называется четной, если ее график симметричен относительно оси ОУ и для любого x ϵ D(f) верно: -х ϵ D(f) и f (-x) = f (x).Т.е. функция называется четной, если любым двум противоположным значениям аргумента, из области определения, соответствуют равные значения функции.На графике четная функция имеет ось симметрии OY.Функция называется нечетной, если ее область определения симметрична относительно нуля и для любого x ϵ D(f) верно: -х ϵ D(f) и f (-x) = -f (x).Т.е. функция называется нечетной, если любым двум противоположным значениям аргумента соответствуют противоположные значения функции.На графике нечетная функция симметрична относительно начала координат.Произведение или частное двух четных функций — есть функция четная.Произведение или частное двух нечетных функций — есть функция четная.Произведение или частное двух функций, одна из которых четная, а другая нечетная — есть функция нечетная.Функция нашего примера — ни четная, ни нечетная.
  7. Периодичность функции.Функция y = f (x) называется периодической с периодом Т > 0, если для любого x ϵ D(f) верно: (х — Т) ϵ D(f), (х + Т) ϵ D(f) и f (х — Т) = f (х + Т) = f (x).Если Т > 0 является периодом функции y = f (x), то число  — период функции y = f (kx + b).Если Т1 > 0 и Т2 > 0 — периоды соответствующих функций y = f (x) и y = g (x), причем , где m, n ϵ N, , то любая комбинация этих функций y = a • f (x) + b • g(x), a, b ϵ Z, также периодическая, период которой равен T = HOK(T1, T2).Функция нашего примера не является периодической.
  8. Точки экстремума функции (точки максимума и минимума).Точка х0 называется точкой минимума, если для всех х ϵ D(f) в некоторой окрестности этой точки выполняется равенство f (x) ≥ f (x0).На графике точки минимума — это абсциссы, в которых график выглядит как «ямка».Для нашего примера точки минимума — это х1 = -4,5, х2 = 3.Точка х0 называется точкой максимума, если для всех х ϵ D(f) в некоторой окрестности этой точки выполняется равенство f (x) ≤ f (x0).На графике точки максимума — это абсциссы, в которых график выглядит как «горка».Для нашего примера точки максимума — это х1 = -7, х2 = -1, х3 = 7.
  9. Наименьшее и наибольшее значение функции.Число y = t называется наименьшим значением функции на промежутке [a, b], если для любого значения аргумента х ϵ [a, b] из этого промежутка верно неравенство t ≥ f (x).Для нашего примера наибольшее значение функции на промежутке [-8; 9,4] равно ун/б = 4,2.Число y = t называется наибольшим значением функции на промежутке [a, b], если для любого значения аргумента х ϵ [a, b] из этого промежутка верно неравенство t ≤ f (x).Для нашего примера наименьшее значение функции на промежутке [-8; 9,4] равно ун/м = -4.
Читайте также:  В окнах устанавливают двойные рамы какое свойство воздуха используется

Свойства элементарных функций

  1. Линейная функция f (x) = kx + b.D(f) = R, E(f) = R.График функции y = kx + b — прямая линия. Функция монотонно возрастает при k > 0 и убывает при k < 0. При b = 0 прямая линия проходит через начало координат, при этом функция y = kx — нечетная. Промежутки постоянного знака для функции y = kx зависят от знака параметра k:k > 0, то y > 0 при x > 0; y < 0 при x < 0;k < 0, то y > 0 при x < 0; y < 0 при x > 0.
  2. Квадратичная функция f(x) = ах2 + bх + с, а ≠ 0. Графиком является парабола.

    Функция

    Область определения

    R

    R

    Вершина параболы

    (0; 0)

    Нули функции

    x = 0

    Экстремумы

    если a < 0, то минимум в вершине
    если a > 0, то максимум в вершине

    Область значений

    Четность

    четная

    ни четная, ни нечетная

  3. Степенная функция f (x) = хn, n ≥ 2, n ϵ N. Графиками ее являются квадратичные или кубические параболы.

    Функция

    Область определения

    R

    R

    Область значений

    R

    [0; +∞ )

    Четность

    нечетная

    четная

    Нули функции

    х =0

    х =0

    Экстремумы

    нет

    х = 0 — точка минимума

    Монотонность

    возрастает при х ϵ R

    при х ≤ 0 убывает
    при х > 0 возрастает

  4.  — частный случай дробно-рациональной функции. Графиками ее являются гиперболы соответствующей степени. Заметим, что

    Функция

    Область определения

    R кроме х = 0

    R кроме х = 0

    Область значений

    (-∞ ; 0) U (0; +∞ )

    (0; +∞ )

    Четность

    нечетная

    четная

    Нули функции

    нет

    нет

    Экстремумы

    нет

    нет

    Монотонность

    убывает при x ϵ D(f)

    при х < 0 возрастает
    при х > 0 убывает

  5. Степенная функция 

    Функция

    Область определения

    Область значений

    Нули функции

    х = 0

    х = 0

    Экстремумы

    нет

    нет

    Монотонность

    возрастает при х ϵ D(f)

    возрастает при х ϵ D(f)

  6. Показательная функция 

    Функция

    y = ax, 0 < a < 1

    y = ax, a > 1

    Область определения

    R

    R

    Область значений

    ( 0; +∞ )

    ( 0; +∞ )

    Нули функции

    нет

    нет

    Экстремумы

    нет

    нет

    Монотонность

    убывает при х ϵ D ( f )

    возрастает при х ϵ D ( f )

  7. Логарифмическая функция 

    Функция

    y = logax, 0 < a < 1

    y = logax, a > 1

    Область определения

    ( 0; +∞)

    ( 0; +∞)

    Область значений

    R

    R

    Нули функции

    нет

    нет

    Экстремумы

    нет

    нет

    Монотонность

    убывает при х ϵ D ( f )

    возрастает при х ϵ D ( f )

  8.  — тригонометрические функции.

    Функция

    y = sin x

    y = cos x

    Область определения

    R

    R

    Область значений

    [-1; 1 ]

    [-1; 1 ]

    Нули функции

    Четность

    нечетная

    четная

    Периодичность

    Экстремумы

    Монотонность

    возрастает при

    убывает при

    возрастает при

    убывает при

  9.  — тригонометрические функции.

    Функция

    y = tg x

    y = ctg x

    Область определения

    R кроме

    R кроме

    Область значений

    R

    R

    Нули функции

    Четность

    нечетная

    нечетная

    Периодичность

    Монотонность

    возрастает при

    убывает при

  10.  — обратные тригонометрические функции.

    Функция

    y = arcsin x

    y = arcos x

    Область определения

    [-1; 1 ]

    [-1; 1 ]

    Область значений

    Нули функции

    x = 0

    x = 1

    Четность

    нечетная

    ни четная, ни нечетная

    Монотонность

    возрастает при x ϵ [-1; 1 ]

    убывает при x ϵ [ -1 ; 1 ]

  11.  — обратные тригонометрические функции

    Функция

    y = arctg x

    y = arcctg x

    Область определения

    R

    R

    Область значений

    Нули функции

    x = 0

    нет

    Четность

    нечетная

    нечетная

    Монотонность

    возрастает при x ϵ R

    убывает при x ϵ R

  12. Иррациональные функции вида .

    Функция

    Область определения

    R

    [0; +∞ )

    Область значений

    R

    [0; +∞ )

    Нули функции

    х = 0

    х = 0

    Экстремумы

    нет

    нет

    Монотонность

    возрастает при х ϵ D ( f )

    возрастает при х ϵ D ( f )

Обратные функцииОбратимой называют функцию, принимающую каждое свое значение в единственной точке области определения.Например, у = х2 необратима на R, т.к. уравнение f (х) = х2 имеет два решения:. Однако, у = х2 обратима на множестве х ≥ 0 или на множестве х ≤ 0, где выполняется единственность решения.Функцию f-1(x) называют обратной к функции f (x), если функция f-1(x) в каждой точке области значений обратимой функции f принимает такое значение у, что f (y) = x.Например, функцией, обратной к функции f (x) = kx + b, является функция:Свойства обратных функций

  1. Область значений функции f-1(x) является областью определения функции f (x).E(f-1(x)) = D(f), E(f) = D(f-1(x)).
  2. Графики функции f (x) и обратной к ней f-1(x) симметричны относительно биссектрисы у = х.
  3. Если функция f (x) монотонна на промежутке Х, то она обратима на этом промежутке.
  4. Если функция f (x) возрастает (убывает) в своей области определения, то и обратная к ней f-1(x) тоже возрастает (убывает).
Читайте также:  Какие свойствами воды люди пользуются когда умываются

Пример 1.Найти область значений функции РешениеПо определению синуса: -1 ≤ sinx ≤ 1. Умножим данное неравенство на 5:-5 ≤ 5sin x ≤ 5, затем вычтем из всех частей неравенства 2, получим: -7 ≤ 5sin x — 2 ≤ 3.Ответ: [-7; 3].Пример 2.Указать множество значений функции y = 5 — 2хРешение1-й способ.Симметрично оси ОХ отобразим график показательной функции у = 2х, чтобы получить график у = -2х. Затем последнюю функцию поднимем на 5 единиц вверх по оси ОУ. Видим, что область значений нашей функции — это луч (-∞; 5).2-й способ.2х > 0. Умножим данное неравенство на (-1), получим -2х < 0. Прибавим к обеим частям неравенства 5, получим 5 — 2х < 5. Т.е. Е (у) = (-∞; 5).Ответ: (-∞; 5).Пример 3.Найти область определения функции РешениеПо определению логарифмической функции -х2 + 5х — 4 > 0. По теореме, обратной к теореме Виета, найдем корни квадратного уравнения: х1 = 1, х2 = 4 и разложим квадратный трехчлен на множители: -(х — 1)(х — 4) > 0. Применяя метод интервалов для решения неравенства, получим х ϵ (1; 4).Ответ: (1; 4).Пример 4.Найти множество значений функции РешениеВыразим х через у: 6х + 7 = 3у — 10ху; х(6 + 10у) = 3у — 7.Если 6 + 10у = 0, то у = -0,6. Подставляя это значение у в последнее уравнение, получим:0х = -8,8. Данное уравнение корней не имеет, значит, функция не принимает значения равного -0,6.Если 6 + 10у ≠ 0, то . Область определения последнего уравнения — любое действительное у, кроме у = -0,6. Получаем, что Е(у) = (-∞; -0,6) U (-0,6; +∞).Ответ: (-∞; -0,6) U (-0,6; +∞).Пример 5.Найти множество значений функции РешениеУчитывая, что , по свойствам неравенств получим . Т.е. Е (у) = [-3; +∞).Ответ: [-3; +∞).Пример 6.Найти множество значений функции РешениеТак как Е(х2) = [0; +∞), то Е(х2 + 3) = [3; +∞). Так как обратная пропорциональность — непрерывная и убывающая функция на этом промежутке, большему значению аргумента будет соответствовать меньшее значение функции. При стремлении аргумента этой функции к +∞ значение самой функции стремится к нулю: Е (1 / (х2 + 3)) = (0; 1/3].Ответ: (0; 1/3].Пример 7.Найти множество значений функции РешениеЕ(х2) = [0; +∞), Е(х2 + 3) = [3; +∞). Так как функция непрерывна и возрастает на этом промежутке, то Ответ: .Пример 8.Найти наименьшее значение функции РешениеРазность принимает наименьшее значение при наибольшем значении вычитаемого. Дробь принимает наибольшее значение при наименьшем значении знаменателя. Получаем, что данная функция принимает наименьшее значение при наименьшем значении выражения , находящегося в знаменателе дроби.Итак, наименьшее значение знаменателя равно 1. Тогда функция принимает значение, равное -1.Ответ: -1.Список используемой литературы Видеолекция «Свойства функций»:

include ($_SERVER[‘DOCUMENT_ROOT’] . ‘/inc/ad-inc.htm’); ?>

Источник