При взаимодействии с каким веществом водород проявляет окислительные свойства

При взаимодействии с каким веществом водород проявляет окислительные свойства thumbnail

Химические свойства водорода

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s1. С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

2.3.1. Химические свойства водорода и галогенов.

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

2Na + H2 = 2NaH Ca + H2 = CaH2

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

C + 2H2 = CH4

N2 + 3H2 = 2NH3

2.3.1. Химические свойства водорода и галогенов.

2.3.1. Химические свойства водорода и галогенов.

Hal2 pl'us H2 ravno 2HHal

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

MgO + H2

Al2O3 + H2

Fe2O3 + 3H2 = 2Fe + 3H2O

CuO + H2 = Cu + H2O

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

CO + H2 = CH3OH

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

2FeCl3 + H2 = 2FeCl2 + 2HCl

CuCl2 + H2 = Cu + 2HCl

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.

Галоген
Физические свойства
F2Светло-желтый газ с резким раздражающим запахом
Cl2Желто-зеленый газ с резким удушливым запахом
Br2Красно-бурая жидкость с резким зловонным запахом
I2Твердое вещество с резким запахом, образующее черно-фиолетовые кристаллы

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns2np5, где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

F2 > Cl2 > Br2 > I2

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

H2 + F2 = 2HF

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

H2 + Cl2 = 2HCl

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

H2 + Br2 = 2HBr

H2 + I2 = 2HI

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

2P + 5F2 = 2PF5

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

P + Cl2; P + Br2

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

2P + 3I2 = 2PI3

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

3F2 + S = SF6

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

взаимодействие серы с хлором и бромом

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Au + F2 = AuF2

Pt + 2F2 = PtF4

Остальные галогены реагируют со всеми металлами кроме платины и золота:

2Fe + 3Cl2 = 2FeCl3

2Fe + 3Br2 = 2FeBr3

Fe + I2 = FeI2

Cu + Cl2 = CuCl2

2Cu + I2 = 2CuI

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Br2 + 2KI = I2 + 2KBr

Cl2 + 2HBr = Br2 + 2HCl

I2 + KBr

Br2 + HCl

Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:

Na2S + Br2 = 2NaBr + S

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

H2S + 4Cl2 + 4H2O = H2SO4 + 8HCl

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

H2O + 2F2 = OF2 + 2HF

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Cl2 + H2O <=> HCl + HClO

Br2 + H2O <=> HBr + HBrO

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

2NaOH + 2F2 → OF2 + 2NaF + H2O

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:Cl2 + 2NaOH = NaCl + NaClO + H2OBr2 + 2NaOH = NaBr + NaBrO + H2O

а при нагревании:

3Cl2 + 6NaOH = 5NaCl + NaClO3 + 3H2O

2.3.1. Химические свойства водорода и галогенов.

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:

3I2 + 6NaOH > 5NaI + NaIO3 + 3H2O

Источник

    Водород проявляет и восстановительные, и окислительные свойства. В обычных условиях благодаря прочности молекул он сравнительно мало активен и непосредственно взаимодействует лишь со фтором. При нагревании же вступает во взаимодействие с многими неметаллами — хлором, бромом, кислородом и пр. Восстановительная способность водорода используется для получения некоторых простых веществ из оксидов и галидов  [c.274]

    В 99 отмечалось, что электродные потенциалы процессов, протекающих с участием воды, ионов водорода илн гидроксид-ионов, имеют тем большую величину, чем кислее раствор, паче говоря, если в электрохимическом процессе принимает участие вода и продукты ее диссоциации, то окислитель сильнее проявляет окислительные свойства в кислой среде, а восстановитель сильнее проявляет восстановительные свойства в щелочной среде. Эта общая закономерность хорошо видна на примере соединений мышьяка. Мышьяковая кислота и ее солн в кислой среде взаимодействуют с восстановителями, переходя в мышьяковистую кислоту или в арсениты. Например  [c.426]

    Стандартные потенциалы металлов ф приведены в табл. 6 в порядке возрастания их алгебраической величины, образуя так называемый ряд напряжений металлов. Если стандартный потенциал металла имеет знак минус, это означает, что металл в паре со стандартным водородным электродом выполняет функцию отрицательного электрода, избыточные электроны которого переходят к ионам Н . При знаке плюс на металле донором электронов являются молекулы водорода, адсорбированные на поверхности платинового электрода. Электроны, переходя на металлический электрод, притягивают из раствора катионы металла, которые, концентрируясь и разряжаясь на его поверхности, сообщают ему положительный заряд. С увеличением алгебраического значения стандартного потенциала металла уменьшаются восстановительные свойства его атомов и увеличиваются окислительные свойства образующихся при этом катионов. Так, цинк по своим восстановительным свойствам превосходит водород, а ионы Н по своим [c.159]

    Соединения Fe (III) проявляют окислительные свойства. При этом окислительное действие [Fe(0H2)eP наиболее активно проявляется в кислой, а [Fe( N)e]3- — в щелочной среде. Будучи сильным окислителем, [Fe( N)e]3 окисляет перекись водорода  [c.629]

    Окислительные свойства пероксида водорода. 1. К 3- [c.106]

    Соли пероксида водорода называются пероксидами или перекисями. Они состоят из положительно заряженных ионов металла и отрицательно заряженных ионов 01 . Степень окисления кислорода в пероксиде водорода равна —1, т. е. имеет промежуточное значение между степенью окисления кислорода в воде (-2) и в молекулярном кислороде (0). Поэтому пероксид водорода обладает свойствами как окислителя, так и восстановителя, т. е. проявляет окислительно-восстановительную двойственность. Все же для него более характерны окислительные свойства, так как стандартный потенциал электрохимической системы [c.475]

    Образующиеся при разложении хлорида и фосфата аммония термически устойчивые хлористый водород и фосфорная кислота не обладают окислительными свойствами и [c.215]

    Соляная, разбавленная серная и другие кислоты, анионы которых не обладают окислительными свойствами, взаимодействуют с железом с выделением водорода и образованием солен железа (П)  [c.301]

    Значение электроотрицательности водорода промежуточное между ОЭО металлов и неметаллов и равно 2,1. Поэтому для химии водорода характерны реакции с понижением степени окисления, в которых он функционирует как окислитель, и процессы с повышением окислительного числа, где он играет роль восстановителя. И окислительные, и восстановительные функции может выполнять и атомарный, и молекулярный водород. Однако способность быть окислителем у водорода выражена менее ярко, чем его восстановительные свойства. Это обусловлено сравнительно небольшим значением сродства к электрону для атома водорода. Окислительные свойства водорода проявляются, например, в реакциях со щелочными и щелочно-земельными металлами с образованием их гидридов. По восстановительной активности водород также уступает таким широко распространенным в технике восстановителям, как уголь, алюминий, кальций и др. [c.296]

    Применение перекиси водорода во многих технологических процессах, медицине и других областях основывается на ее окислительных свойствах. Наиболее характерный для перекиси водорода экзотермический распад в кислой среде может быть представлен уравнением  [c.287]

    Пероксид водорода может проявлять окислительные и восстановительные свойства. Наиболее характерны для пероксида водорода его окислительные свойства  [c.275]

    Окислительные свойства производных Мо (VI) и XV (VI) проявляются лишь при взаимодействии с наиболее сильными восстановителями, например с водородом в момент выделения. [c.568]

    Помимо OF2 ири этом всегда образуются кислород, озон и пероксид водорода. При обычных условиях OF2 — бесцветный газ с резким запахом озона. Фторид кислорода очень ядовит, проявляет сильные окислительные свойства и может служить одним из эффективных окислителей ракетных топлив. [c.366]

    Взаимодействие металлов с кислотами. При взаимодействии металлов с кислотами в качестве окислителя выступает ион водорода, который оттягивает электрон от агома восстановителя. В качестве восстановителя в этих реакциях могут участвовать только металлы, за исключением мало активных. Реакции окисления металлов ионами водорода протекают в водных растворах тех кислот, анионы которых (илн сами молекулы) не проявляют окислительных свойств. [c.118]

    Окислительные свойства перекиси водорода основаны на сравнительно легком отщеплении одного из атомов кислорода. Перекись водорода при разложении выделяет значительное количество, тепла. Она склонна к самопроизвольному разложению на воду и кислород. При добавлении стабилизаторов стойкость Н2О2 настолько повыщается, что ее можно безопасно транспортировать. Разложение перекиси водорода становится ощутимым лишь тогда,, когда создаются для этого условия или когда она приходит в соприкосновение с веществами, во много раз ускоряющими ее разложение. Свет оказывает лишь очень слабое ускоряющее действие на разложение перекиси водорода. Скорость разложения разбавленного раствора перекиси водорода возрастает с увеличением концентрации пропорционально корню квадратному из количества поглощенной энергии. [c.121]

    В молекуле сероводорода вследствие смещения двух электронов от атомов водорода к атому серы вокруг последнего формируется устойчивый октет из восьми электронов. Сера при этом максимально восстановлена и не может присоединять электроны, поэтому сероводород не проявляет окислительных свойств. [c.213]

    Практически важно то обстоятельство, что очень крепкая (выше 75%) серная кислота не действует на железо. Это позволяет хранить и перевозить ее в стальных цистернах. Напротив, разбавленная H2SO4 легко растворяет железо с выделением водорода. Окислительные свойства для нее вовсе не характерны, [c.316]

    Важно отметить, однако, что внутри группы галогенов при переходе от легких к тяжелым элементам наблюдаются не только сходство физических и химических свойств, но и их закономерное изменение. Так, температуры плавления и кипения, а также удельный вес постепенно возрастают, углубляется окраска, уменьшается прочность двухатомных молекул свободных галогенов. Также закономерно изменяются при переходе от F к J химические свойства — ослабевают окислительные свойства галогенов, падает реакционная способность по отношению к водороду и металлам, но возрастают прочность кислородных соединений, сила галогеноводородных кислот и их восстановительная способность. Иными словами, в группе г алогенов, так же как и во всех других группах [c.61]

    Как известно, экстракция ионов ОН- из водной фазы в органическую среду проходит с трудом. Поэтому можно ожидать, что ион НОа также будет плохо экстрагироваться, или, другими словами, анионы, входящие в состав катализатора, такие, как хлориды или бромиды, будут иметь большую константу экстракции, чем моноанион пероксида водорода. Однако было найдено, что экстракция частиц с окислительными свойствами из 35%-ного ( 10 М) Н2О2 в метиленхлорид легко осуществляется при использовании некоторых катализаторов [57]. Иодо-метрическое титрование органической фазы после установления равновесия с катализатором приводит к результатам, представленным в табл. 3.28. [c.387]

    Концентрированная серная кислота, наоборот, обладает окислительными свойствами. Именно поэтому она способна растворять металлы, стоящие в ряду активностей правее водорода, например, медь [c.72]

    Восстановительные свойства свободных металлов и водорода. Окислительные свойства кислот. Опыт 1. В цилиндрическую пробирку влить 3—4 мл разбавленной серной кислоты (1 4). Прибавить по каплям раствор перманганата калия КМПО4 до слаборозового окрашивания жидкости. Отлить половину в другую пробирку. Внести в одну пробирку 2—3 кусочка магниевой стружки, в другую — столько же железной стружки. Наблюдать [c.26]

    Действие третичных аминов, которые также обладают антн-. окислительными свойствами, объясняют по механизму прилипания образованием промежуточного соединения в виде радикала-комплекса (вероятно, аналогичную роль должны играть и ароматические гидразины, не имеющие подвижных атомов водорода). [c.61]

    Подействуйте по отдельности на растворы, содержащие ионы Ре2+ и Р +, раствором пероксида водорода. Какие свойства — окислительные или восстановительные — проявляет пероксид водорода Рассчитайте ЭДС возможных реакций. Проведите эксперименты при различных концентрациях реагирующих веществ, например на разбавленные растворы Ре или Ре подействуйте концентрированным раствором пероксида водорода и, наоборот, на концентрированные растворы ионов железа подействуйте разбавленным раствором пероксида водорода. Влияет ли концентрация веществ на направление реакции Исследуйте также влияние среды раствора на прохождение изучаемых реакций. [c.276]

    При исследовании сахарного угля было также замечено, что образцы, наиболее активные при разложении перекиси водорода, оказывались наименее реакционноспособиыми при окислении гексацианоферрата калия, арсенита натрия, нитрита калия и хи-нона. Таким образом, одним поверхностным оксидам углерода в большой мере присущи восстановительные, другим — окислительные свойства. [c.53]

    Окислительные свойства водорода проявляются редко и только в соединениях с металлами (образование гидридов). [c.161]

    Бромная кислота в отличие от хлорной и йодной в свободном виде неустойчива, и окислительные свойства у нее проявляются гораздо сильнее, чем у хлорной, хотя по силе эти кислоты примерно одинаковы. Йодная же кислота является слабой кислотой, кристаллизуется в виде дигидрата Н104 2И20 и обнаруживает свойства многоосновной кислоты, поскольку образует соли, отвечающие замещению всех пяти атомов водорода атомами металла, например NasIOe. Это неудивительно, так как крупный атом иода координирует вокруг себя больше атомов кислорода, чем бром или хлор (6 вместо 4). Такая же тенденция проявляется в других группах периодической системы химических элементов Д. И. Менделеева (ср., например, серную и теллуровую кислоты). [c.108]

    Октафторид осмия проявляет резко выраженные окислительные свойства. Водой ои иостеиенио разлагается на тетраоксид осмия и фтористый водород  [c.698]

    При растворении железа в соляной кислоте роль окислителя выполняют ионы водорода. В отличие от хлора они могут окислить железо лншь до двухвалентного состояния. Прежде всего это связано со слабыми по сравнению с хлором окислительными свойствами ионов водорода. Кроме того, образующийся в результате реакции водород в момент выделения является сильным восстановителем и препятствует более глубокому окислению металла. Поэтому, если в кислотах растворение металла, проявляющего переменную валентность, сопровождается выделением водорода, в образующихся соединениях металл, как правило, проявляет низшую валентность. [c.217]

    Мй+2НС1=МеС12+Н2 Кислоты, обладающие окислительными свойствами, реагируют с активными металлами, а также с некоторыми металлами, расположен-, ными правее водорода в ряду напряжений. При зтом вместо водорода образуется вода  [c.35]

    Окислительные свойства положительно поляризованных атомов водорода. Кусочек ленты или стружки магния помещают в 1 М раствор МН4С1. Наблюдают выделение газа. Ионы водорода, образующиеся при протолизе [КН4]+-ионов, действуют как окислитель, принимая электроны атомов магния. [c.469]

    Взаимодействие простых веществ с кислотами — окислительно-восстановительный процесс, в котором кис- ота выступает в качестве окислителя, а простое вещество — в роли восстановителя. Характер протекания процесса зависит рт а) природы кислоты и ее концентрации б) температуры с) природы простого вещества. Разбавленные кислоты, как правило, проявляют окислительные свойства за счет иона водорода, а концентрированные — за счет элемента (не водорода и не кислорода) в высшей степени окисления. НС1 и в разбавленном и в концентрированном виде в реакциях с металлами проявляет окислительные свойства за счет иона водорода . HNO3 и в разбавленном и в концентрированном виде проявляет окислительные свойства только за счет азота (в степени окисления -1-5). [c.107]

Лекции по общему курсу химии (1964) — [

c.120

]

Источник