Какие химические свойства имеют кислоты

Какие химические свойства имеют кислоты thumbnail

Классификация кислот

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

КислородсодержащиеБескислородные
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH  и т.д.)HF, HCl, HBr, HI, H2S

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H+, а также замещаться на атомы металла:

одноосновные

двухосновные

трехосновные
HBr, HCl, HNO3, HNO2, HCOOH, CH3COOH

H2SO4, H2SO3, H2CO3, H2SiO3

H3PO4

3) Летучесть

Кислоты обладают различной способностью улетучиваться из водных растворов.

ЛетучиеНелетучие

H2S, HCl, CH3COOH, HCOOH

H3PO4, H2SO4, высшие карбоновые кислоты

4) Растворимость

РастворимыеНерастворимые
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3, HNO2, H3PO4, H2CO3, CH3COOH, HCOOHH2SiO3, высшие карбоновые кислоты

5) Устойчивость

УстойчивыеНеустойчивые
H2SO4, H3PO4, HCl, HBr, HFH2CO3, H2SO3

6) Способность к диссоциации

хорошо диссоциирующие (сильные)

малодиссоциирующие (слабые)

H2SO4, HCl, HBr, HI, HNO3, HClO4

H2CO3, H2SO3, H2SiO3

7) Окисляющие свойства

слабые окислители

(проявляют окислительные свойства за счет катионов водорода H+)

сильные окислители

(проявляют окислительные свойства за счет кислотообразующего элемента)

практически все кислоты кроме HNO3 и H2SO4 (конц.)

HNO3 любой концентрации, H2SO4 (обязательно концентрированная)

Химические свойства кислот

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (Какие химические свойства имеют кислоты), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H+ + Cl—

либо в таком: HCl → H+ + Cl—

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать  в уравнении вместо знака Какие химические свойства имеют кислоты две стрелки Какие химические свойства имеют кислоты. Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

CH3COOH Какие химические свойства имеют кислоты CH3COO— + H+

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H+ :

H3PO4 Какие химические свойства имеют кислоты H+ + H2PO4—

H2PO4— Какие химические свойства имеют кислоты H+ + HPO42-

HPO42- Какие химические свойства имеют кислоты H+ + PO43-

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4— , которые, в свою очередь, диссоциируют лучше, чем ионы HPO42-. Связано такое явление с увеличением заряда кислотных остатков,  вследствие чего возрастает прочность связи между ними и положительными ионами H+.

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

H2SO4Какие химические свойства имеют кислоты 2H+ + SO42-

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только  за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

H2SO4(разб.) + Zn Какие химические свойства имеют кислоты ZnSO4 + H2

2HCl + Fe Какие химические свойства имеют кислоты FeCl2 + H2

Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с  основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

H2SO4 + ZnO Какие химические свойства имеют кислоты ZnSO4 + H2O

6HNO3 + Fe2O3Какие химические свойства имеют кислоты 2Fe(NO3)3 + 3H2O

H2SiO3 + FeO ≠

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH Какие химические свойства имеют кислоты H2O + NaCl

3H2SO4 + 2Al(OH)3 Какие химические свойства имеют кислоты Al2(SO4)3 + 6H2O

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

H2SO4 + Ba(NO3)2Какие химические свойства имеют кислоты BaSO4↓ + 2HNO3

CH3COOH + Na2SO3Какие химические свойства имеют кислоты CH3COONa + SO2↑ + H2O

HCOONa + HCl Какие химические свойства имеют кислоты HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Читайте также:  Какими свойствами обладает помидоры

Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4  без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной  и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого  зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной  и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:характерные химические свойства кислот серной и азотной

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

4HCl + MnO2Какие химические свойства имеют кислоты MnCl2 + Cl2↑ + 2H2O

16HBr + 2KMnO4Какие химические свойства имеют кислоты 2KBr + 2MnBr2 + 8H2O + 5Br2

14НI + K2Cr2O7Какие химические свойства имеют кислоты 3I2↓ + 2Crl3 + 2KI + 7H2O

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

6HI + Fe2O3Какие химические свойства имеют кислоты 2FeI2 + I2↓ + 3H2O

2HI + 2FeCl3Какие химические свойства имеют кислоты 2FeCl2 + I2↓ + 2HCl

Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:

2H2S + SO2 Какие химические свойства имеют кислоты 3S↓+ 2H2O

Источник

Кислоты (неорганические, минеральные) — это сложные соединения состоящие из катиона водорода (H+) и аниона кислотного остатка(SO32-, SO42-, NO3—  и т.д). 

Осторожно! Кислоты!

Кислотам дали такое название не просто так. Большинство из них имеют кислый вкус. С некоторыми из них знаком каждый из вас. Это, например, уксусная кислота, которая есть в каждом доме, аскорбиновая кислота (она же витамин C), лимонная кислота и т.д. Но не стоит все кислоты пробовать на вкус. Кислоты являются очень едкими веществами. Даже всем нам привычная и известная аскорбиновая кислота в большой концентрации будет вредна нашему организму. А от более сильных кислот — серной, соляной и даже уксусной — можно получить очень сильные ожоги, вплоть до летального исхода. Поэтому при работе с кислотами нужно быть осторожными, а также соблюдать технику безопасности!!!

Таблица названий некоторых кислот и их солей

Название кислотыФормулаНазвание соли
СернаяH2SO4Сульфат
СернистаяH2SO3Сульфит
СероводороднаяH2SСульфид
Соляная (хлористоводородная)HClХлорид
Фтороводородная (плавиковая)HFФторид
БромоводороднаяHBrБромид
ЙодоводороднаяHIЙодид
АзотнаяHNO3Нитрат
АзотистаяHNO2Нитрит
ОртофософорнаяH3PO4Фосфат
УгольнаяH2CO3Карбонат
КремниеваяH2SiO3Силикат
УксуснаяCH3COOHАцетат

Классификация кислот

По содержанию кислорода
Кислородсодержащие (H2SO4) Бескислородные (HCl)
По количеству содержащихся катионов водорода (H+)
Одноосновные (HCl)Двухосновные (H2SO4)Трёхосновные (H3PO4)

Понятие «одноосновная кислота» произошло по причине того, что для нейтрализации одной молекулы одноосновной кислоты нам понадобится одна молекула основания. для двухосновной — соответственно две молекулы и т. д.

По растворимости (в воде)
Растворимые (HCl)Нерастворимые (H2SiO3)
По силе (степени диссоциации)
Сильные (H2SO4)Слабые (CH3COOH)
По летучести
Летучие (H2S)Нелетучие (H2SO4)
По устойчивости
Устойчивые (H2SO4)Неустойчивые (H2CO3)

Свойства кислот

Изменение цвета индикаторов в кислой среде

ИндикаторНейтральная средаКислая среда
Метилоранжоранжевыйкрасный
Лакмусфиолетовыйкрасный
Фенолфталеинбесцветныйбесцветный
Бромтимоловый синийзеленыйжелтый
бромкрезоловый зеленыйсинийжелтый

Химические свойства кислот

  • Взаимодействие с металлами (в ряду активности находящихся до водорода), протекает с выделением газообразного водорода и образованием солей: 

H2SO4 + 2Na → Na2SO4 + H2

Металлы, находящиеся в ряду активности после водорода,  не вступают в реакцию с кислотой (кроме концентрированной серной кислоты).

Азотная и концентрированная серная кислоты проявляют свойства окислителей, и продукты реакций будут зависеть от концентрации, температуры и природы восстановителя.

  • Взаимодействуют с оксидами основных и амфотерных металлов с образованием солей и воды:

H2SO4 + MgO → MgSO4 + H2O

  • С основаниями, с образованием солей и воды (так называемая реакция нейтрализации):

H2SO4 + 2NaOH → Na2SO4 + H2O

  • Кислоты могут взаимодействовать с солями, если в результате реакции будет образовываться нерастворимая соль, или выделяться газ:

H2SO4 + K2CO3 → K2SO4 + H2O + CO2

  • Сильные кислоты могут вытеснять из солей более слабые кислоты:

3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4

Читайте также:  Какие свойства сложение ответ

Получение кислот

  • Взаимодействие кислотного оксида с водой:

H2O + SO3 →H2SO4

  • Взаимодействие водорода и неметалла:

H2 + Cl2 → 2HCl

  • Вытеснение слабой кислоты из солей, более сильной кислотой:

3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4

Применение кислот

В настоящее время, минеральные и органические кислоты находят множество сфер применения.  

Серная кислота (H2SO4), находит широкое применение в химической технологии, для производства лакокрасочных материалов, производстве минеральных удобрений, в пищевой промышленности (пищевая добавка Е513), в качестве электролита в производстве аккумуляторных батарей.

Раствор двухромовокислого калия в серной кислоте (хромовая смесь) используются в лабораториях для мытья химической посуды. Являясь сильным окислителем, хромка позволяет отмывать посуду от следов загрязнений органическими веществами. Так же, хромовая смесь используется в органическом синтезе.

Борная кислота, применение кислот

Борная кислота (H3BO3) используется в медицине как антисептик, в качестве флюса при пайке металлов, как борсодержащее удобрение, в домашнем хозяйстве используется как средство от тараканов.

Широко известны в домашнем использовании при выпечке уксусная и лимонная кислоты. Также в быту их используют для удаления накипи.

Знакомая всем с детства аскорбиновая кислота, более известная в народе как витамин С, применяется при лечении простудных заболеваний.

Азотная кислота (HNO3) находит применение при производстве взрывчатых веществ, при производстве минеральных азотсодержащих удобрений (аммиачная, калиевая селитра), в производстве лекарственных средств (нитроглицерин).

Источник

Кислоты — сложные вещества, состоящие из одного или
нескольких атомов водорода, способных замещаться на атома металлов, и кислотных
остатков.

Какие химические свойства имеют кислоты

Классификация
кислот

1.
По числу атомов водорода:
число атомов водорода (n) определяет основность кислот:

n
= 1  одноосновная   

n
= 2  двухосновная   

n
= 3   трехосновная

2.
По составу:

а) Таблица кислородсодержащих  кислот, кислотных остатков и
соответствующих кислотных оксидов:

Кислота (НnА)

Кислотный остаток
(А)

Соответствующий  кислотный оксид

H2SO4 серная

SO4 (II) сульфат

SO3    оксид
серы (VI)

HNO3 азотная

NO3 (I) нитрат

N2O5 оксид азота
( V)

HMnO4 марганцевая

MnO4 (I) перманганат

Mn2O7 оксид марганца
(VII)

H2SO3 сернистая

SO3 (II) сульфит

SO2      оксид
серы (IV )

H3PO4 ортофосфорная

PO4 (III) ортофосфат

P2O5   оксид
фосфора (V)

HNO2 азотистая

NO2 (I) нитрит

N2O3   оксид
азота (III )

H2CO3 угольная

CO3 (II) карбонат

CO2 оксид углерода
( IV)

H2SiO3 кремниевая

SiO3 (II) силикат

SiO2  оксид
кремния (IV)

НСlO хлорноватистая

СlO  (I) гипохлорит

Сl2O оксид хлора (I)

НСlO2 хлористая

СlO2 (I) хлорит

Сl2O3оксид хлора (III)

НСlO3  хлорноватая

СlO3 (I) хлорат

Сl2O5 оксид хлора (V)

НСlO4  хлорная

СlO4 (I) перхлорат

Сl2O7оксид хлора (VII)

б) Таблица бескислородных кислот

Кислота (НnА)

Кислотный остаток (А)

HCl  соляная, хлороводородная

Cl (I) хлорид

H2S сероводородная

S(II) сульфид

HBr
бромоводородная

Br (I) бромид

HI йодоводородная

I(I) йодид

HF
фтороводородная,плавиковая

F(I) фторид

Физические
свойства кислот

Многие кислоты,
например серная, азотная, соляная – это бесцветные жидкости. известны также
твёрдые кислоты: ортофосфорная, метафосфорная HPO3,
борная H3BO3.
Почти все кислоты растворимы в воде. Пример нерастворимой кислоты – кремниевая H2SiO3.
Растворы кислот имеют кислый вкус. Так, например, многим плодам придают кислый
вкус содержащиеся в них кислоты. Отсюда названия кислот: лимонная, яблочная и
т.д.

Способы
получения кислот

бескислородные

кислородсодержащие

HCl, HBr, HI, HF,
H2S

HNO3, H2SO4и другие

ПОЛУЧЕНИЕ

1. Прямое взаимодействие неметаллов

H2 + Cl2 = 2 HCl

1. Кислотный оксид + вода = кислота  

SO3 + H2O  = H2SO4

2. Реакция обмена между солью и менее
летучей кислотой

2 NaCl (тв.) + H2SO4(конц.) =  Na2SO4 + 2HCl­

Химические
свойства кислот

1. Изменяют окраску индикаторов 

 Видео «Действие кислот на индикаторы»

Название индикатора

Нейтральная среда

Кислая среда

Лакмус

Фиолетовый

Красный

Фенолфталеин

Бесцветный

Бесцветный

Метилоранж

Оранжевый

Красный

Универсальная индикаторная бумага

Оранжевая

Красная

2.Реагируют с металлами в ряду активности до  H2  

(искл. HNO3 –азотная кислота)             
                           

 Видео «Взаимодействие кислот с металлами»

Ме + КИСЛОТА =СОЛЬ + H2↑         
(р. замещения)

Какие химические свойства имеют кислоты

Zn + 2 HCl = ZnCl2 + H2                                  

3. С основными (амфотерными) оксидами – оксидами металлов

 Видео «Взаимодействие оксидов металлов с кислотами»

МехОу +  КИСЛОТА=
СОЛЬ + Н2О
     (р. обмена)

CuO + H2SO4 = Cu SO4 + H2O

4. Реагируют с основаниями  реакция нейтрализации

КИСЛОТА  + ОСНОВАНИЕ= СОЛЬ+ H2O    (
р. обмена)

H3PO4 + 3NaOH = Na3PO4 + 3H2O

5. Реагируют с солями слабых, летучих кислот — если образуется кислота,
выпадающая в осадок или выделяется газ:

2 NaCl (тв.) + H2SO4(конц.) =  Na2SO4 + 2HCl­↑  ( р. обмена)

Сила кислот убывает в ряду:

HI > HClO4
> HBr > HCl > H2SO4 > HNO3 >
HMnO4 > H2SO3 > H3PO4
> HF > HNO2 >H2CO3 > H2S
> H2SiO3 .

Каждая предыдущая кислота может вытеснить из соли последующую

 Видео «Взаимодействие кислот с солями»

6. Разложение кислородсодержащих кислот при нагревании 

( искл. H2SO4 ; H3PO4 )

КИСЛОТА = КИСЛОТНЫЙ ОКСИД + ВОДА       (р.
разложения )

Запомните!  Неустойчивые
кислоты (угольная и сернистая) – разлагаются на газ и воду:
       

H2CO3 ↔
H2O + CO2↑

H2SO3
↔ H2O + SO2↑

Сероводородная кислота в продуктах выделяется в виде газа:

СаS + 2HCl = H2S↑ + CaCl2

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Распределите химические формулы кислот  в таблицу. Дайте им названия:

LiOH, Mn2O7, CaO, Na3PO4, H2S, MnO, Fe(OH)3, Cr2O3, HI , HClO4 ,HBr , CaCl2, Na2O,  HCl , H2SO4 , HNO3 , HMnO4 , Ca(OH)2, SiO2,  H2SO3 , Zn(OH)2, H3PO4 , HF , HNO2 ,H2CO3 , N2O, NaNO3,H2S , H2SiO3

Кислоты

Бес-кисло-

родные

Кислород- содержащие

растворимые

нераст-воримые

одно-

основные

двух-основные

трёх-основные

Читайте также:  Определить у каких металлов ярче выражены металлические свойства

№2.
Составьте уравнения реакций:

Ca
+ HCl

Na
+ H2SO4

Al
+ H2S

Ca
+ H3PO4
Назовите продукты реакции.

№3.
Составьте уравнения реакций, назовите продукты:

Na2O + H2CO3

ZnO + HCl

CaO + HNO3

Fe2O3
+ H2SO4

№4.
Составьте уравнения реакций взаимодействия кислот с основаниями и солями:

KOH + HNO3

NaOH + H2SO3

Ca(OH)2 + H2S

Al(OH)3 + HF

HCl + Na2SiO3

H2SO4
+ K2CO3

HNO3 + CaCO3

Назовите
продукты реакции.

ТРЕНАЖЁРЫ

Тренажёр №1. «Формулы и названия кислот»

Тренажёр №2. » Установление соответствия:
формула кислоты — формула оксида»

Тренажёр №3. «Действие кислот на индикаторы»

Тренажёр №4. «Классификация кислот по наличию
кислорода в кислотном остатке»

Тренажёр №5. «Классификация кислот по
основности»

Тренажёр №6. «Классификация кислот по
растворимости в воде»

Тренажёр №7. «Классификация кислот по стабильности»

Техника безопасности — Оказание первой помощи при
попадании кислот на кожу

Техника безопасности — Правила техники безопасности
при работе с кислотами файл

Техника безопасности — Правило разбавления
концентрированной серной кислоты водой

Источник

Немного теории

Кислоты

Кислоты ― это сложные
вещества, образованные атомами водорода, способными замещаться на атомы металла и кислотными остатками.

Кислоты — это электролиты, при диссоциации
которых образуются только катионы водорода и анионы кислотных остатков.

Классификация кислот

Классификация кислот по составу

Кислородсодержащие кислоты

Бескислородные кислоты

H2SO4 серная кислота

H2SO3 сернистая кислота

HNO3 азотная кислота

H3PO4 фосфорная кислота

H2CO3 угольная кислота

H2SiO3 кремниевая кислота

HF фтороводородная кислота

HCl хлороводородная кислота (соляная кислота)

HBr бромоводородная кислота

HI иодоводородная кислота

H2S сероводородная кислота

Классификация кислот по числу атомов водорода

 

К И С Л О Т Ы

 

Одноосновные

Двухосновные

Трехосновные

HNO3 азотная

HF фтороводородная

HCl хлороводородная

HBr бромоводородная

HI иодоводородная

H2SO4 серная

H2SO3 сернистая

H2S сероводородная

H2CO3 угольная

H2SiO3 кремниевая

H3PO4 фосфорная

Классификация кислот на сильные и слабые кислоты.

Сильные кислоты

Слабые кислоты

HI иодоводородная

HBr бромоводородная

HCl хлороводородная

H2SO4 серная

HNO3 азотная

HF фтороводородная

H3PO4 фосфорная

H2SO3 сернистая

H2S сероводородная

H2CO3 угольная

H2SiO3 кремниевая

Химические свойства кислот

  • Взаимодействие с основными оксидами с образованием соли и воды:
  • Взаимодействие с амфотерными оксидами с образованием соли и воды:
  • Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
  • Взаимодействие с солями, если выпадает осадок или выделяется газ:
  • Сильные кислоты вытесняют более слабые из их солей:

(в данном случае образуется неустойчивая угольная кислота , которая сразу же распадается на воду и углекислый газ)

  • С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:
  • Кислоты диссоциируют с образованием катиона водорода, что приводит к изменению окраски индикаторов:

— лакмус становится красным

— метилоранж становится красным.

1. водород+неметалл
H2+ S → H2S
2. кислотный оксид+вода
 P2O5
+ 3H2O→2H3PO4
Исключение:
2NO2
+ H2O→HNO2 + HNO3  
SiO2 + H2O —не реагирует
3. кислота+соль
В продукте реакции должен
образовываться осадок, газ или вода. Обычно более сильные кислоты вытесняют
менее сильные кислоты из солей. Если соль нерастворима в воде, то она реагирует
с кислотой, если образуется газ.
Na2CO3
+ 2HCl→2NaCl + H2O + CO2↑
K2SiO3
+ H2SO4→K2SO4 + H2SiO3↓

Основания (осно́вные гидрокси́ды) — сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы      (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

1. По растворимости в воде. 
Растворимые основания
(щёлочи): гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
Практически нерастворимые основания
: Mg(OH)2, Ca(OH)2, Zn(OH)2, Cu(OH)2
Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов
2. По количеству гидроксильных групп в молекуле. 
Однокислотные (гидроксид натрия NaOH)
Двукислотные (гидроксид меди(II) Cu(OH)2)
Трехкислотные (гидроксид железа(III) In(OH)3)
3. По летучести. 
Летучие: NH3
Нелетучие: щёлочи, нерастворимые основания.
4. По стабильности. 
— Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
— Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
5. По степени электролитической диссоциации. 
— Сильные (α > 30 %): щёлочи.

— Слабые (α < 3 %): нерастворимые основания.

  • Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь.

Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.

  • Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
  • Также основание можно получить при взаимодействия щелочного или щелочноземельного металла с водой.
  • Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
  • Некоторые основания можно получить обменными реакциями:
  • В водных растворах основания диссоциируют, что изменяет ионное равновесие:

это изменение проявляется в цветах некоторых 
кислотно-основных индикаторов:
лакмус становится синим,
метилоранж — жёлтым,
фенолфталеин приобретает цвет фуксии.

  • При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:

Примечание: 
реакция не идёт, если и кислота и основание слабые.

  • При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
  • Растворимые основания могут реагировать с амфотерными гидроксидами с образованием гидроксокомплексов:

  • Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
  • Растворимые снования вступают в обменные реакции с растворимыми солями:

Нерастворимые основания при нагреве разлагаются:

Источник