При какой температуре металл теряет магнитные свойства при

При какой температуре металл теряет магнитные свойства при thumbnail

Приветствую вас, уважаемые читатели. Сегодня я подумал, чем бы всех удивить, но так, чтобы это было ещё и познавательно. Ходил из угла в угол, пока не вспомнил об одном очень занимательном физическом эффекте — влияние магнита на пламя. Кажется странным, как магнит и огонь вообще могут взаимодействовать? Поэтому без лишней болтовни, предлагаю перейти прямо к нашему эксперименту. Поехали!

Для начала, я предлагаю немного вспомнить, что из себя представляет магнит и каков принцип его действия. Человечеству давно известно, что электричество и магнетизм это две стороны одной медали. К слову, магнитные поля это практически то же самое, во что превращаются электрические поля, когда заряженные частицы начинают движение. Наглядная демонстрация вышесказанного — провод, с движущимися по нему электронами заставляет шевелиться стрелку компаса.

пример электромагнетизма

Но работу постоянных магнитов, на мой взгляд, можно охарактеризовать как квантово-механический феномен. Ещё Древние Греки в регионе Магнисия заметили, что природные минералы притягивают металл. Отсюда и произошло название магнитов. Природные минералы, остывшие при своём зарождении в зоне магнитного поля других намагниченных минералов или в зоне магнитного поля земли, сами становятся магнитами.

Для примера возьмём ненамагниченный металл. Он состоит из целой кучи маленьких магнитных кристаллов, называемых доменами. Они беспорядочно направлены в разные стороны.

схематичная иллюстрация доменов в ненамагниченном металле

А если взять намагниченный металл, то увидим, что все домены строго упорядочены в одном направлении. Они имеют южную и северную сторону соответственно. Такая ориентация доменов, является ключевым моментом на право называться магнитом.

ориентация доменов в намагниченном металле

Я бы хотел показать для примера один интересный эксперимент с намагничиванием металлической скрепки. Скрепка, с привязанной к ней ниткой «левитирует» в зоне магнитного поля сильного магнита. Её домены, как мы уже знаем, выстроились в одинаковом направлении. Но стоит нагреть скрепку горелкой до температуры Кюри, как она теряет свои магнитные свойства.

Происходит это потому, что кристаллическая структура материала меняется при нагревании. Направленность магнитных доменов меняется в хаотичном порядке. Стоит её остыть и она снова готова «левитировать». Всё это очень кратко и упрощенно, пожалуйста не кричите на меня в комментариях. Но, нам пора возвращаться к теме статьи.

Пламя свечи это не металл и не минерал, даже твердым телом оно не является. Воздействие магнитного поля на огонь стало быть исключено? Или всё таки нет, давайте посмотрим на эксперимент.

Для начала поднесём неодимовый магнит к парафиновой свече:

неодимовый магнит и пламя свечи взаимодействуют

Как такое может быть и какое научное объяснение можно дать такому неожиданному эффекту? Может во всём виноваты потоки горячего воздуха вокруг шарообразного магнита? Давайте посмотрим, что будет если поднести обычный подшипник к свече:

Пламя не реагирует. Лишь на подшипнике мы можем наблюдать образование воды (конденсата) и если поднести слишком близко, будет оседать сажа.

Тогда, для начала давайте разберёмся из чего состоит пламя парафиновой свечи. При горении парафина выделяется углекислый газ, вода и углерод (копоть). Являются ли эти вещества диамагнетиками? Конечно! И более того, имеют отрицательную магнитную восприимчивость.

Парафин и стеарин, вещества из которых обычно изготовлены свечи, сами по себе отталкивают магнит. Кажется, вполне себе легитимное объяснение. Или есть ещё какое-то? Жду ваших мнений в комментариях под этой статьёй.

С вами была Светлая Сторона.

Спасибо за просмотр!

Источник

Àâòîð Òåìà:  
Ìàãíèòíûå ñâîéñòâà ØÕ15 ïðè êîâêå è çàêàëêå.
    (ïðîñìîòðîâ: 1439)

 

ÀíòèòåððîÐ

posted 17-5-2008 12:17
   

Äîáðûé äåíü äÿäüêè!! =) Âîïðîñ ñîáñòâåííî â ñëåäóþùåì: ìîæíî ëè èñïîëüçîâàòü ìàãíèò äëÿ îïðåäåëåíèÿ êîâî÷íîé òåìïåðàòóðû è òåìïåðàòóðû çàêàëêè? Ãäå-òî ÷èòàë ñòàòüþ ÷òî ïðè çàêàëêå èñïîëüçîâàëè ìàãíèò. Êàê ? Ñïðîñèòå âû.. Îòâåò áûë ïðîñò.. Ãðåëè çàãîòîâêó äî òåõ ïîð ïîêà îíà ïåðåñòàâàëà ìàãíèòèòüñÿ..

Çàêàëêà ØÕ15 840 .Ñ, ÷òî íà öâåò Ñâåòëî-êðàñíûé…. 830-900 ò.å. ïðè ýòîé òåìïåðàòóðå îíî ïåðåñòàëî ìàãíèòèòüñÿ.

ïðîñâåòèòå ïðî äàííûé âîïðîñ, èëè óêàæèòå ãäå îá ýòîì ìîæíî ïî÷èòàòü..

P.S. Íå ìîãëè áû âû íàïèñàòü ñ êàêîé max t. äî êàêîé min t. êóåòñÿ ØÕ15.

edit log

 

anatoly

posted 17-5-2008 14:26
   

Îòêðûâàåì ñïðàâî÷íèê — 1150-800 Ñ. À â îñòàëüíîì âñå ïðàâèëüíî, çàêàëêà ñ 830 â ìàñëî, îòïóñê ïðè 150 — 60 ïî Ðîêâåëëó. Åñëè ÿ ïðàâèëüíî ïîíèìàþ — ìàðòåíñèò ïåðåõîäèò â àóñòåíèò è ìàãíèòíûå ñâ-âà òåðÿþòñÿ, êàê ðàç òî ÷òî íóæíî äëÿ îïðåäåëåíèÿ íà÷àëà çàêàëî÷íîé òð-ðû. Åñëè íå ïðàâ, òîâàðèùè ïîïðàâÿò
Ñ ÓÂàæåíèåì

maxut

posted 17-5-2008 16:04
   

Íà ñêîëüêî ÿ çíàþ ïðâàë. ß èç øõ ìíîãî íàêîâàë è èìåííî òàê òåìïåðàòóðó îïðåäåëÿë. Ïðîáëåì íå âîçíèêàëî.

ÏÛÕ

posted 18-5-2008 03:12
   

À ÿ ñ ìàãíèòîì ïîïðîáîâàë è ïåðåêàë ïîëó÷èëñÿ, íà ìîé âçãëÿä. ØÕ ëó÷øå íåäîãðåòü, ÷åì ïåðåæå÷ü ÈÌÕÎ.

Alan_B

posted 18-5-2008 17:36
   

Ìàãíèòîì ìîæíî ïðèáëèçèòåëüíî ïîéìàòü òî÷êó À2, êîòîðàÿ íåñêîëüêî âûøå À1 êîòîðàÿ â ñëó÷àå ØÕ 15 = À3. Åñëè ïåðåâåñòè íà ðóññêèé — ïîòåðà ìàãíèòíûõ ñâîéñòâ = ïðàêòè÷åñêè ìèíèìàëüíàÿ âîçìîæíàÿ òåìïåðàòóðà çàêàëêè, â ñëó÷àå ØÕ15 ãðåòü íóæíî íåñêîëüêî âûøå..

ÀíòèòåððîÐ

posted 18-5-2008 23:15
   

Ìíîþ â ãàðàæå áûë îáíàðóæåí ïîäøèïíèê. Èäåÿ ÷òî èç íåãî ñäåëàòü ïðèøëà ìîìåíòàëüíî, ñîáñòâåííî äëÿ ýòîãî è áûëà ñîçäàíà ýòà òåìà. Íî íå äîæäàâøèñü îòâåòà ÿ óåõàë íà äà÷ó ïðèõâàòèâ ýòî ïîäøèïíè÷åã. Ïåðâûì äåëîì ïîñëå øàøëûêà Íàãðåë åãî äî êðàñíà, ïîïûòàëñÿ ðàçðóáèòü îáîéìó çóáèëîì. Íî íè÷åãî ó ìåíÿ íå ïîëó÷èëîñü. Ðåøåíèå áûëî ïðèíÿòî ñðàçó, îòæå÷ü. Îñòàâèë åãî íà íî÷ü â òëåþùèõ óãëÿõ. Ñ óòðà, äîñòàë åãî ïîñìîòðåë. áûë îí ÷óòü òåïëûé. Äàëåå ïîíåñëîñü… Íå îáíàðóæèë íîæîâêè, íå ãîâîðþ óæå ïðî áîëãàðêó. Ïðèøëîñü çàæàòü â òèñêè, âçÿòü ñàìûé áîëüøîé íàïèëüíèê è ðåáðîì «ïèëèòü» îáîéìó Ïîñëå òîãî êàê îáîéìà áûëà ðàñïèëåíà Ðàçâåë óãëè êèíóë ïîäøèïíèê òóäà. Îïÿòü íàãðåë äî êðàñíà, è ïîïûòàëñÿ âûáèòü øàðèêè. Íå ïîëó÷èëîñü èçìó÷èëñÿ. Äàëåå îïÿòü íàãðåâ, óæå ïðèøëà èäåÿ çàáèòü çóáèëî ìåæäó âåðõíåé îáîéìîé è øàðèêàìè. Ïîëó÷èëîñü, âûáèë . Î÷åðåäíîé íàãðåâ, ïîïûòêà ðàñêîâàòü â ïîëîñó.. Íåóäà÷à «êîëüöî» íà÷àëî ïëþùèòüñÿ. Ïðèøëà èäåÿ ïîäïèõíóòü åãî ïîä óãîëîê è ðàñïðÿìèòü è î! ÷óäî! ïîëó÷èëîñü! äàëåå ãðåë òóïî äî êðàñíà è êîâàë ïðèìåðíî ïî 7-8 ñåêóíä, ïîòîìó, ÷òî íó íå õîòåëî îíî ïîòîì êîâàòüñÿ íîðìàëüíî.. Âðîäå ðàñêîâàëîñü çâîí ïëàñòèíû êàê ó êîëîêîëà íàâåðíî áåç òðåùèí ïîëó÷èëîñü )))
click for enlarge 653 X 490 101,5 Kb picture
click for enlarge 653 X 490 53,2 Kb picture
click for enlarge 653 X 490 66,2 Kb picture
click for enlarge 653 X 490 52,8 Kb picture
click for enlarge 653 X 490 58,5 Kb picture
click for enlarge 653 X 490 95,8 Kb picture
click for enlarge 653 X 490 112,8 Kb picture
click for enlarge 653 X 490 67,8 Kb picture
click for enlarge 490 X 653 93,8 Kb picture

edit log

9par

posted 19-5-2008 01:54
   

ÀíòèòåððîÐ —
Ìîëîäîé ÷åëîâåê — íà áóäóþùåå, åñëè ñîáåð¸òåñü åù¸ ÷òî ëèáî êîâàòü èç ïîäøèïíèêîâ
áåð¸òå ïîäøèïíèê, êðåïêóþ íî íå áîëüøóþ ïðÿìóþ îòâ¸ðòêó, è áîêîðåçû èëè ïàññàòèæè
ðàçðûâàåòå îáîéìó(ñåïàðàòîð)øàðèêîâ â îäíîé èç çàêë¸ïîê, ïîñëå ÷åãî ïàññàòèæàìè èëè áîêîðåçàìè ñðûâàåòå îäíó èç ïëàñòèí îáîéìû ( ñåïàðàòîðà), âòîðàÿ âûïàäàåò â íèç ñàìà, ñîáèðàåòå øàðèêè îäèí ê îäíîìó è ðóêàìè ëåãêî ðàçáèðàåòå ïîäøèïíèê, äàëåå ñ íèì î÷åíü ëåãêî ðàáîòàòü, è ïðîãðåâ áîëåå ðàâíîìåðíûé è áûñòðûé

íå îáèæàéòåñü, ýòî îáúÿñíÿþ äëÿ òîãî ÷òî áû ïðè ðàçáèâàíèè «äåäîâñêèì » ñïîñîáîì ïîäøèïíèêà â òèñêàõ êóâàëäîé, èëè êàê îäèí ìîé çíàêîìûé â ïðåññå ïûòàëñÿ ðàçäàâèòü, (â ðåçóëüòàòå ÷åãî çíàêîìûé îñòàëñÿ áåç çóáà) ìîãóò áûòü òðàâìîîïàñíûå îñêîëêè

òàê âîò ýòî âñ¸ ÿ ïèøó òîëüêî ñ îäíîé öåëüþ, ÷òî áû ïðè ðàçáîðå ïîäøèïíèêîâ âû íå ïîêàëå÷èëè íè ñåáÿ, íè îêðóæàþùèõ, è äîáðûõ âàì íà÷èíàíèé è ãîòîâûõ õîðîøèõ êëèíêîâ..
Ñ óâàæåíèåì. Ðîìàí.

Fktrcfylh

posted 19-5-2008 17:32
   

quote:âçÿòü ñàìûé áîëüøîé íàïèëüíèê è ðåáðîì «ïèëèòü» îáîéìó

quote:èçìó÷èëñÿ

Çàâåäèòå ñåáå áîëãàðêó, äà õîòü êèòàéñêóþ èç ÎÁÈ. Çà âðåìÿ, ïîòðà÷åíîå íà ðàñïèë îáîéìû òàêèì ñïîñîáîì, ìîæíî ìíîãî ÷åãî óñïåòü ñäåëàòü.
Âîò åùå ìîæíî ïî÷èòàòü https://forum.guns.ru/forummessage/97/318555.html

Источник

Еще со времен
Гильберта было известно, что железо и
сталь теряют свои магнитные свойства,
будучи нагреты до светло-красного
каления. Они при этом перестают
намагничиваться и не притягиваются
магнитом, но при охлаждении восстанавливают
свои обычные качества. То же происходит
при несколько более высокой температуре
с кобальтом и при более низкой — с
никкелем. Вообще говоря, переход от
магнитного состояния к немагнитному
происхо­дит очень быстро, как только
температура тела достигает опреде­ленного
предела.

152

В
виде примера приведем данные, которые
былиполучены:
Гопкинсоном во время одного опыта с
куском кованого железа. Когда этот
материал был подвергнут действию слабого
магнитного поля (H=0,3
эрстеда), его магнитная проницаемость
непрерывно возрастала с повышением
температуры сначала медленно, затем
все быстрее и быстрее и так далее, до
предельной температуры, которая в
описываемом случае оказалась равной
775° С. При этой температуре магнитная
проницаемость во много раз больше, чем
в случае холодного железа. При дальнейшем
нагревании последовала чрезвычайно
быстрая потеря магнитных свойств: когда
температура поднялась всего только на
11°, т. е. до 786°С, железо сделалось
практически немагнитным. Его магнитная
проницаемость стала равной 1,1, между
тем как при 775°С проницаемость имела
значение около 11000. На рисунке 89)
представлена графически зависимость

от температуры в данном случае, т. е. при
H=0,3
эрстеда.

При какой температуре металл теряет магнитные свойства при

Здесь весьма
отчетливо видно, насколько внезапно
магнитная проницаемость данного образца
железа падает при приближении температуры
его к 786°С. Когда материал был подвергнут
дей­ствию сравнительно более сильного
поля, переход от магнитного состояния
к немагнитному совершался более плавно,
но потеря

153

магнитных свойств
столь же полная, и происходит это при
той же температуре, что и раньше. Гопкинсон
назвал ее критиче­ской температурой.
На рисунках 90 и 91 представлена зави­симость
от температуры
при

H=4
эрстедам,

H=45
эрстедам,

При какой температуре металл теряет магнитные свойства при

При какой температуре металл теряет магнитные свойства при

для того же сорта
железа, к которому относится и рисунок
89. В случае H=4
эрстедам, по мере повышения температуры
еще наблюдается некоторый подъем ,
и это
продолжается приблизительно до 650°.
Затем довольно
быстро падает. В случае же Н=45
эрстедам, повышения 
по мере повышения температуры совсем
не наблюдается. В пределах от 0 до 500°С
магнитная про­ницаемость практически
сохраняется неизменною, а при дальнейшем
нагревании начинает медленно падать и
сравнительно медленно же падает до
предельного значения =1,1
при температуре в 786° С. Критическая
температура различных сортов железа и
стали колеблется, как показали
исследования, в пределах от 690° до 870°С.
У кобальта критическая температура
равна приблизительно 1000°, у никкеля
—около 310°С.

Из приведенных на
рисунках 89, 90 и 91 кривых ясно, что в
пре­делах нормальных рабочих температур,
встречающихся в обычной электротехнической
практике, изменение магнитных свойств
железа и стали в зависимости от нагревания
настолько ничтожно, что при всякого
рода расчетах им можно пренебречь.

На рисунке 92
приведены еще характерные кривые,
предста­вляющие результаты наблюдений
Гопкинсона над ходом намаг­ничения
железа при разных температурах.

При какой температуре металл теряет магнитные свойства при

Здесь
кривая I
дает зависимость В
от
Н
при
температуре в 10°. Кривая 11 дает ту же
зависимость при температуре в 670°. Кривая
III
построена для

154

температуры
около 742°, и, наконец, кривая IV
— для температуры около 771°. На рисунке
93 представлены начальные части этих
кривых.

При какой температуре металл теряет магнитные свойства при

Здесь
масштаб Н
взят
нарочно большим, чтобы наглядно показать
относительное расположение кривых и
их пересечение. Обозначения кривых те
же, что и на рисунке 92.

Из
всех приведенных кривых отчетливо
видно, что чем слабее магнитное поле,
воздействующее на железо, тем большее
значение имеет повышение температуры
в смысле достижения высших степеней
намагничения. В этом отношении мы имеем
полную ана­логию с влиянием сотрясений
на магнитные свойства ферромаг­нитных
материалов (см. § 39). В данном случае
гипотеза элементарных магнитов дает
возможность высказать предположение,
что с повышением температуры устойчивость
отдельных групп магни­тиков должна
уменьшаться, так как при этом возрастает
общая подвижность всех молекул тела.
Надо полагать, что при прибли­жении
к критической температуре эта подвижность
настолько уже велика, что достаточно
небольших добавочных воздействий со
стороны слабой намагничивающей силы
для того, чтобы нарушить исходные
группировки молекулярных магнитиков
и ориентировать ихв
направлении поля.

155

Есть
много данных в пользу того предположения,
что при пере­ходе через критическую
температуру железо я
другие
магнитные материалы вообще претерпевают
какое-то резкое изменение в своих
свойствах. Так, при переходе через
критическую температуру резко меняются
термо-электрические свойства, а также
электрическое сопротивление материала.
Далее, железо и сталь, предварительно
нагретые выше критической температуры,
при остывании темнеют до достижения
этой температуры и затем внезапно
вспыхивают, проходя через нее. Это
последнее явление, открытое Барретом.
было им названо рекалесценцией.
Выяснилось,
что температура рекалесценции как раз
и есть температура критическая в
магнитном отношении. Совре­менная
металлургия в полной мере выяснила
сущность того, что про­исходит с
железом и другими подобными ма­териалами
при переходе через критическую
тем­пературу. Именно, при этом происходит
очень быстрое изменение мо­лекулярного
строения вещества, связанное с превращением
одной мо­дификации его (магнит­ной)
в другую (немаг­нитную).

Кроме
тех изменений магнитных качеств же­леза,
которые обнару­живаются немедленно
при повышении температуры его, на
практике приходится встречаться еще с
одним явлением, которое также повидимому
обусловливается нагреванием. Речь идет
о так называемом старении
железа.
Этот
про­цесс протекает очень медленно
при сравнительно низких температурах
и выражается между прочим в изменении
потерь на гистерезис, которые обычно
возрастают с течением времени. Такое
возрастание потерь на гисте-

156

резис
в прежнее время нередко наблюдалось
при работе транс­форматоров переменного
тока, для изготовления которых приме­нялось
простое железо. Есть основание полагать,
что в данном слу­чае мы имеем дело с
медленным изменением молекулярного
строе­ния железа. Опыт показывает,
что процесс старения ускоряется при
нагревании. В частности при температурах
порядка 150°—200° процесс этот протекает
в несколько дней, в то время как при
температурах порядка 50° он протекает
годы, прежде чем железо придет в некоторое
установившееся состояние. В связи с
тем, что явление впервые было наблюдено
в
трансформаторах,
сначала высказывалось предположение,
что возрастание потерь нагистерезис
представляет собою результат некоторой
усталости материала, происходящей
вследствие непрерывного перемагничивания,
подобно усталости упругого тела,
подверженного повторным механическим
напряжениям. Юинг, однако, показал, что
переменное намагниче­ние само по себе
не производит никакого действия. Мордей
выяснил совершенно определенно, что
возрастание потерь на гисте­резис
происходит исключительно благодаря
длительному нагрева­нию материала.
Это было затем подтверждено исследованием
Роджета. Для иллюстрации сказанного
выше о старении железа приведены на
рисунке 94 кривые гистерезиса, полученные
Роджетомдля
некоторого сорта железа при

Bmax=4000
гауссов.

При какой температуре металл теряет магнитные свойства при

Здесь изображены
три цикла. Первый характеризует железо
в начальной стадии, т. е. до нагревания.
Второй — через 19 часов нагревания при
200°. Третий цикл характеризует материал
после нагревания при той же температуре
в течение 4 дней. За это время был пройден
максимум потерь на гистерезис.

В настоящее время
в области электрического машиностроения
и аппаратостроения вопрос о старении
железа потерял свою остроту, благодаря
тому, что удалось получить сплавы железа,
обладающие весьма устойчивыми магнитными
качествами (например, кремнистое железо).

Источник

Еще со времен Гильберта было известно, что железо и сталь теряют свои магнитные свойства, будучи нагреты до светло-красного каления. Они при этом перестают намагничиваться и не притягиваются магнитом, но при охлаждении восстанавливают свои обычные качества. То же происходит при несколько более высокой температуре с кобальтом и при более низкой — с никкелем. Вообще говоря, переход от магнитного состояния к немагнитному происхо­дит очень быстро, как только температура тела достигает опреде­ленного предела.

В виде примера приведем данные, которые былиполучены: Гопкинсоном во время одного опыта с куском кованого железа. Когда этот материал был подвергнут действию слабого магнитного поля (H=0,3 эрстеда), его магнитная проницаемость непрерывно возрастала с повышением температуры сначала медленно, затем все быстрее и быстрее и так далее, до предельной температуры, которая в описываемом случае оказалась равной 775° С. При этой температуре магнитная проницаемость во много раз больше, чем в случае холодного железа. При дальнейшем нагревании последовала чрезвычайно быстрая потеря магнитных свойств: когда температура поднялась всего только на 11°, т. е. до 786°С, железо сделалось практически немагнитным. Его магнитная проницаемость стала равной 1,1, между тем как при 775°С проницаемость имела значение около 11000. На рисунке 89) представлена графически зависимость m от температуры в данном случае, т. е. при H=0,3 эрстеда.

Здесь весьма отчетливо видно, насколько внезапно магнитная проницаемость данного образца железа падает при приближении температуры его к 786°С. Когда материал был подвергнут дей­ствию сравнительно более сильного поля, переход от магнитного состояния к немагнитному совершался более плавно, но потеря

магнитных свойств столь же полная, и происходит это при той же температуре, что и раньше. Гопкинсон назвал ее критиче­ской температурой. На рисунках 90 и 91 представлена зави­симость mот температуры при

H=4 эрстедам,

H=45 эрстедам,

для того же сорта железа, к которому относится и рисунок 89. В случае H=4 эрстедам, по мере повышения температуры еще наблюдается некоторый подъем m, и это продолжается приблизительно до 650°. Затем mдовольно быстро падает. В случае же Н=45 эрстедам, повышения m по мере повышения температуры совсем не наблюдается. В пределах от 0 до 500°С магнитная про­ницаемость практически сохраняется неизменною, а при дальнейшем нагревании начинает медленно падать и сравнительно медленно же падает до предельного значения m=1,1 при температуре в 786° С. Критическая температура различных сортов железа и стали колеблется, как показали исследования, в пределах от 690° до 870°С. У кобальта критическая температура равна приблизительно 1000°, у никкеля —около 310°С.

Из приведенных на рисунках 89, 90 и 91 кривых ясно, что в пре­делах нормальных рабочих температур, встречающихся в обычной электротехнической практике, изменение магнитных свойств железа и стали в зависимости от нагревания настолько ничтожно, что при всякого рода расчетах им можно пренебречь.

На рисунке 92 приведены еще характерные кривые, предста­вляющие результаты наблюдений Гопкинсона над ходом намаг­ничения железа при разных температурах.

Здесь кривая I дает зависимость В от Н при температуре в 10°. Кривая 11 дает ту же зависимость при температуре в 670°. Кривая III построена для

температуры около 742°, и, наконец, кривая IV — для температуры около 771°. На рисунке 93 представлены начальные части этих кривых.

Здесь масштаб Н взят нарочно большим, чтобы наглядно показать относительное расположение кривых и их пересечение. Обозначения кривых те же, что и на рисунке 92.

Из всех приведенных кривых отчетливо видно, что чем слабее магнитное поле, воздействующее на железо, тем большее значение имеет повышение температуры в смысле достижения высших степеней намагничения. В этом отношении мы имеем полную ана­логию с влиянием сотрясений на магнитные свойства ферромаг­нитных материалов (см. § 39). В данном случае гипотеза элементарных магнитов дает возможность высказать предположение, что с повышением температуры устойчивость отдельных групп магни­тиков должна уменьшаться, так как при этом возрастает общая подвижность всех молекул тела. Надо полагать, что при прибли­жении к критической температуре эта подвижность настолько уже велика, что достаточно небольших добавочных воздействий со стороны слабой намагничивающей силы для того, чтобы нарушить исходные группировки молекулярных магнитиков и ориентировать ихв направлении поля.

Есть много данных в пользу того предположения, что при пере­ходе через критическую температуру железо я другие магнитные материалы вообще претерпевают какое-то резкое изменение в своих свойствах. Так, при переходе через критическую температуру резко меняются термо-электрические свойства, а также электрическое сопротивление материала. Далее, железо и сталь, предварительно нагретые выше критической температуры, при остывании темнеют до достижения этой температуры и затем внезапно вспыхивают, проходя через нее. Это последнее явление, открытое Барретом. было им названо рекалесценцией. Выяснилось, что температура рекалесценции как раз и есть температура критическая в магнитном отношении. Совре­менная металлургия в полной мере выяснила сущность того, что про­исходит с железом и другими подобными ма­териалами при переходе через критическую тем­пературу. Именно, при этом происходит очень быстрое изменение мо­лекулярного строения вещества, связанное с превращением одной мо­дификации его (магнит­ной) в другую (немаг­нитную).

Кроме тех изменений магнитных качеств же­леза, которые обнару­живаются немедленно при повышении температуры его, на практике приходится встречаться еще с одним явлением, которое также повидимому обусловливается нагреванием. Речь идет о так называемом старении железа. Этот про­цесс протекает очень медленно при сравнительно низких температурах и выражается между прочим в изменении потерь на гистерезис, которые обычно возрастают с течением времени. Такое возрастание потерь на гисте-

резис в прежнее время нередко наблюдалось при работе транс­форматоров переменного тока, для изготовления которых приме­нялось простое железо. Есть основание полагать, что в данном слу­чае мы имеем дело с медленным изменением молекулярного строе­ния железа. Опыт показывает, что процесс старения ускоряется при нагревании. В частности при температурах порядка 150°—200° процесс этот протекает в несколько дней, в то время как при температурах порядка 50° он протекает годы, прежде чем железо придет в некоторое установившееся состояние. В связи с тем, что явление впервые было наблюдено в трансформаторах, сначала высказывалось предположение, что возрастание потерь нагистерезис представляет собою результат некоторой усталости материала, происходящей вследствие непрерывного перемагничивания, подобно усталости упругого тела, подверженного повторным механическим напряжениям. Юинг, однако, показал, что переменное намагниче­ние само по себе не производит никакого действия. Мордей выяснил совершенно определенно, что возрастание потерь на гисте­резис происходит исключительно благодаря длительному нагрева­нию материала. Это было затем подтверждено исследованием Роджета. Для иллюстрации сказанного выше о старении железа приведены на рисунке 94 кривые гистерезиса, полученные Роджетомдля некоторого сорта железа при

Bmax=4000 гауссов.

Здесь изображены три цикла. Первый характеризует железо в начальной стадии, т. е. до нагревания. Второй — через 19 часов нагревания при 200°. Третий цикл характеризует материал после нагревания при той же температуре в течение 4 дней. За это время был пройден максимум потерь на гистерезис.

В настоящее время в области электрического машиностроения и аппаратостроения вопрос о старении железа потерял свою остроту, благодаря тому, что удалось получить сплавы железа, обладающие весьма устойчивыми магнитными качествами (например, кремнистое железо).

Дата публикования: 2014-11-03; Прочитано: 9713 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования

(0.002 с)…Наверх

Источник

Читайте также:  Какие специфические свойства характерны для радиоактивных веществ