Оксид какого элемента проявляет амфотерные свойства

Оксид какого элемента проявляет амфотерные свойства thumbnail

Перед изучением этого раздела рекомендую изучить следующие темы:

Классификация неорганических веществ

Классификация оксидов, способы их получения

Химические свойства основных оксидов

Химические свойства кислотных оксидов

Амфотерные оксиды проявляют свойства и основных, и кислотных. От основных отличаются только тем, что могут взаимодействовать с растворами и расплавами щелочей и с расплавами основных оксидов, которым соответствуют щелочи.

1. Амфотерные оксиды взаимодействуют с кислотами  и кислотными оксидами.

При этом амфотерные оксиды взаимодействуют, как правило, с сильными и средними кислотами и их оксидами.

Например, оксид алюминия взаимодействует с соляной кислотой, оксидом серы (VI), но не взаимодействует с углекислым газом и кремниевой кислотой:

амфотерный оксид + кислота = соль + вода

Al2O3 + 6HCl = 2AlCl3 + 3H2O

амфотерный оксид + кислотный оксид = соль

Al2O3 + 3SO3 = Al2(SO4)3

Al2O3 + CO2 ≠

Al2O3 + H2SiO3 ≠

2. Амфотерные оксиды не взаимодействуют с водой.

Оксиды взаимодействуют с водой, только когда им соответствуют растворимые гидроксиды, а все амфотерные гидроксиды — нерастворимые.

амфотерный оксид + вода ≠

3. Амфотерные оксиды взаимодействуют с щелочами.

При этом механизм реакции и продукты различаются в зависимости от условий проведения процесса — в растворе или расплаве.

В растворе образуются комплексные соли, в расплаве — обычные соли.

Формулы комплексных гидроксосолей составляем по схеме:

  1. Сначала записываем центральный атом-комплекообразователь (это, как правило, амфотерный металл).
  2. Затем дописываем к центральному атому лиганды — гидроксогруппы. Число лигандов в 2 раза больше степени окисления центрального атома (исключение — комплекс алюминия, у него, как правило, 4 лиганда-гидроксогруппы).
  3. Заключаем центральный атом и его лиганды в квадратные скобки, рассчитываем суммарный заряд комплексного иона.
  4. Дописываем необходимое количество внешних ионов. В случае гидроксокомплексов это — ионы основного металла.

Основные продукты взаимодействия соединений амфотерных металлов со щелочами сведем в таблицу.

МеталлыВ расплаве щелочиВ растворе щелочи

Степень окисле-ния  +2  (Zn, Sn, Be)

Соль состава X2YO2*. Например:   Na2ZnO2Комплексная соль состава Х2[Y(OH)4]*. Например: Na2[Zn(OH)4]
Степень окисле-ния  +3   (Al, Cr, Fe)Соль состава XYO2 (мета-форма) или X3YO3 (орто-форма). Например: NaAlO2 или  Na3AlO3Na3[Al(OH)6] или Na[Al(OH)4 Комплексная соль состава Х3[Y(OH)6]* или реже  Х[Y(OH)4]. Например: Na[Al(OH)4]

* здесь Х — щелочной металл, Y — амфотерный металл.

Исключение — железо не образует гидроксокомплексы в растворе щелочи!

Например:

амфотерный оксид + щелочь (расплав) = соль + вода

Al2O3 + 2NaOH = 2NaAlO2 + H2O

амфотерный оксид + щелочь (раствор) = комплексная соль

ZnO + 2NaOH + H2O = Na2[Zn(OH)4]

Оксид какого элемента проявляет амфотерные свойства

4. Амфотерные оксиды взаимодействуют с основными оксидами.

При этом взаимодействие возможно только с основными оксидами, которым соответствуют щелочи и только в расплаве. В растворе основные оксиды взаимодействуют с водой с образованием щелочей.

амфотерный оксид + основный оксид = соль + вода

Al2O3 + Na2O = 2NaAlO2

5. Окислительные и восстановительные свойства.

Амфотерные оксиды способны выступать и как окислители, и как восстановители и подчиняются тем же закономерностям, что и основные оксиды. Окислительно-восстановительные свойства амфотерных оксидов подробно рассмотрены в статье про основные оксиды.

6. Амфотерные оксиды взаимодействуют с солями летучих кислот.

При этом действует правило: в расплаве менее летучие кислоты и их оксиды вытесняют более летучие кислоты и их оксиды из их солей.

Например, твердый оксид алюминия Al2O3 вытеснит более летучий углекислый газ из карбоната натрия при сплавлении:

Na2CO3 + Al2O3 = 2NaAlO2 + CO2

Источник

Анонимный вопрос  ·  30 мая 2019

30,5 K

Амфотерными называются элементы, которые в соединениях проявляют свойства металлов и неметаллов. К ним относятся элементы А-групп Периодической системы — Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп — Cr, Mn, Fe, Zn, Cd, Au и др.

Оксиды и гидроксиды этих соединений, соотвественно, будут амфотерными.

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

☘️Амфотерные оксиды — это оксиды, у которых элемент в степени окисления +3 или +4
Например, Al2O3, ТiO2, Cr2O3, Fe2O3, PbO2
☘️Но☝️
ZnO, BeO тоже амфотерные, хотя Zn и Be в степени окисления +2. Это нужно запомнить)
☘️Гидроксиды, которые соответствуют амфотерными оксидам, тоже амофотерны ????

Эффективный репетитор по математике, физике, химии. Автор книг и консультант по обучению…  ·  repetitor-5.ru

Из #викивпечку : Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.
Похожее слово есть в биологии: «амфибия» — животное, которое может жить и в воде, и на суше. Амфи — и тот, и другой, био — жизнь. Живёт и там, и тут.
Амфотер… Читать далее

Что такое «оляция» и «оксоляция»?

Researcher, Institute of Physics, University of Tartu

Возьмем обычный гидроксид. Ну, скажем, гидроксид титана или ортотитановая кислота, кому как нравится. Формула Ti(OH)4. Т.е. условная молекула этого соединения содержит четыре ОН-группы, присоединенные к атому титана. Каждая из этих ОН-групп присоединена к титану так: Ti-OH. Это обычный вариант, обычная концевая («терминальная») ОН-группа, которая присоединена сигма-связью только к одному атому, как ей и положено.
Однако, у кислорода есть неподеленная электронная пара, которая может «сесть» на чью-нибудь незаполненную орбиталь по донорно-акцепторному механизму, а у титана есть куда ей сесть. При этом происходит образование мостиковой ОН-группы между двумя молекулами гидроксида титана (т.е. ОН-группа уже была по обычной сигма-связи соеденина с одним атомом титана, а теперь присоединилась неподеленной парой к еще одному. Выглядит это так: (HO)3Ti-O(H)-Ti(OH)4 . При этом мы видим, что мостиковый кислород имеет три связи, а один из атомов титана — пять. Такая мостиковая ОН-группа называется «ол-группа«, а процесс ее образования, которыя я описал выше — оляцией.
Это структура с формально трехвалентным кислородом и пятивалентным титаном является неустойчивой и довольно быстро переходит в более удобоваримую структуру с мостиковым атомом кислорода: (HO)3Ti-O(H)-Ti(OH)4 -> (HO)3Ti-O-Ti(OH)3 + H2O. Теперь, как мы видим, у всех всё в порядке — кислород двухвалентный, оба титана четырехвалентны, всё как обычно. Этот процесс называется оксоляцией, поскольку ол-группа превращается в мостиковую оксо-группу (-O-). Можно заметить, что отщепилась молекула воды и гидроксид как бы стал на шажок ближе к оксиду. Это будет совершенно справедливое замечание, поскольку конечным результатом оксоляции (далеко не всегда достигаемым, конечно) и будет оксид, у которого ОН-группы остались только на поверхности.

Читайте также:  Какими сходными свойствами обладают следующие вещества

Процессы оляции-оксоляции характерны для амфотерных гидроксидов, а также для слабых кислот и оснований. Обычно происходят после их образования в результате гидролиза, то есть сначала из какой-то соли в результате гидролиза получается гидроксид чего-то, а потом постепенно он претерпевает процессы оляции-оксоляции, при этом из индивидуальных молекул этого гидроксида с одним центральным атомом получаются многоатомные (конденсированные) оксо-гидроксосоединения (это называют поликонденсацией). Именно в связи с этим процессом свежеосажденные гидроксиды гораздо более реакционно способны, чем состарившиеся. У преподавателей есть садистический эксперимент для первокурсников или старших школьников — всем известно, что гидроксид алюминия растворяется в избытке щелочи. Так вот надо аккуратно осадить его, потом оставить на некоторое время, а потом попросить студента растворить его в NaOH. Если студент не в курсе дела, то он будет его растворять до позеленения и навсегда потом запомнит, что такое оляция-оксоляция 🙂

Какие оксиды реагируют с водой?

С водой будут взаимодействовать кислотные и основные оксиды. Кислотные оксиды при взаимодействии с водой будут образовывать кислоты. Из основных оксидов с водой взаимодействуют оксиды щелочных и щелочно-земельных металлов.

Для каких элементов характерны летучие водородные соединения?

Автор проекта ChemistryToday, человек, заинтересованный химией и продвигающий её на…  ·  vk.com/chemtoday

Летучие водородные соединения (ЛВС) образуют, в основном, неметаллы: практически у каждого из них есть такие соединения — гидриды элемента или элемент’иды водорода.

Посмотрим на 2 период Таблицы Менделеева: ЛВС характерны для бора (различные бораны BnHm), углерода (вся органика! CxHy), азота (аммиак, например NH3), кислорода (вода!) и фтора (плавиковая кислота HF). Это как раз все неметаллы 2 периода (за исключением неона, благородного газа).

В 3 периоде всё то же самое: алюминий образует AlH3, алан, кремний — силан SiH4, фосфор — фосфин PH3, сера — сероводород H2S, хлор — хлороводород HCl.

Но так как при движении вниз по группе «металличность» элементов повышается, то для галлия (который под алюминием) уже гораздо менее характерно образование водородных соединений, тем более летучих, поэтому галлий уже выбывает из ЛВС неметаллов 4 периода. Следующий за ним — германий — образует герман GeH4, мышьяк — арсин AsH3, селен — селеноводород H2Se, бром — бромоводород HBr.

Все остальные также существуют: PbH4, SnH4, H2Te, SbH3, BiH3 (очень нестабилен), HI, HAt, H2Po.

Какая структурная формула оловянистой кислоты (H2SnO2)?

ALBA synchrotron, postdoc

Sn(OH)2 в свободном виде не существует. Бывает либо гель гидрата неопределённого состава, либо оксогидроксид Sn6O4(OH)4. Он состоит из кластеров состава Sn6O8, соединенных между собой водородными связями (на картинке не показаны).

Источник

Тема № 10. 

Химические свойства оксидов: основных, амфотерных, кислотных

Рекомендуемые видеоуроки

Теоретические сведения

Оксид  бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом

Номенклатура оксидов

Названия оксидов строится таким образом: сначала произносят слово «оксид», а затем называют образующий его элемент. Если элемент имеет переменную валентность, то она указывается римской цифрой в круглых скобках в конце названия:
NaI2O – оксид натрия; СаIIО – оксид кальция;
SIVO2 – оксид серы (IV); SVIO3 – оксид серы (VI).

Классификация оксидов

По химическим свойствам  оксиды делятся на две группы:
1. Несолеобразующие (безразличные) – не образуют солей, например: NO, CO, H2O;
2. Солеобразующие, которые, в свою очередь, подразделяются на:
–   основные – это оксиды типичных металлов со степенью окисления +1,+2 (I и II групп главных подгрупп, кроме бериллия) и оксиды металлов в минимальной степени окисления, если металл обладает переменной степенью окисления (CrO, MnO);
–  кислотные – это оксиды типичных неметаллов (CO2, SO3, N2O5) и металлов в максимальной степени окисления, равной номеру группы в ПСЭ Д.И.Менделеева (CrO3, Mn2O7);
–  амфотерные оксиды (обладающие как основными, так и кислотными свойствами, в зависимости от условий проведения реакции) – это оксиды металлов BeO, Al2O3, ZnO и металлов побочных подгрупп в промежуточной степени окисления (Cr2O3, MnO2).

Основные оксиды

Основными называются оксиды, которые образуют соли при взаимодействии с кислотами или кислотными оксидами. 

Основным оксидам соответствуют основания. 

Например, оксиду кальция CaO отвечает  гидроксид  кальция Ca(OH)2, оксиду кадмия CdO – гидроксид кадмия Cd(OH)2.

Химические свойства основных оксидов

1. Основные оксиды взаимодействуют с водой с образованием оснований. 

Условие протекания реакции: должны образовываться растворимые основания!
Na2O + H2O → 2NaOH
CaO + H2O → Ca(OH)2

Al2O3 + H2O → реакция не протекает, так как должен образовываться Al(OH)3, который нерастворим.
2. Взаимодействие с кислотами с образованием соли и воды:
CaO + H2SO4 → CaSO4 + H2O.
3. Взаимодействие с кислотными оксидами с образованием соли:
СaO + SiO2→ CaSiO3

4. Взаимодействие с амфотерными оксидами:
СaO + Al2O3  → Сa(AlO2)2

Кислотные оксиды

Кислотными называются оксиды, которые образуют соли при взаимодействии с основаниями или основными оксидами. Им соответствуют кислоты. 

Например, оксиду серы (IV) соответствует сернистая кислота H2SO3.

Химические свойства кислотных оксидов

1. Взаимодействие с водой с образованием кислоты:
Условия протекания реакции: должна образовываться растворимая кислота.

P2O5 + 3H2O → 2H3PO4
2. Взаимодействие со щелочами с образованием соли и воды:

Читайте также:  Какие свойства гепариновой мази

Условия протекания реакции: с кислотным оксидом взаимодействует именно щелочь, то есть растворимое основание.

SO3 + 2NaOH → Na2SO4 + H2O
3. Взаимодействие с основными оксидами с образованием солей:
SO3 + Na2O → Na2SO4

Амфотерные оксиды

Оксиды, гидратные соединения которых проявляют свойства как кислот, так и оснований, называются амфотерными.
Например:  оксид алюминия Al2O3, оксид марганца (IV) MnO2.

Химические свойства амфотерных оксидов

1. C водой не взаимодействуют
2. Взаимодействие с кислотными оксидами с образованием солей при сплавлении (основные свойства):
ZnO + SiO2 → ZnSiO3
3. Взаимодействие с кислотами с образованием соли и воды (основные свойства):
ZnO + H2SO4 → ZnSO4 + H2O
4. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды (кислотные свойства):
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]
Al2O3 + 2NaOH  → 2NaAlO2 + H2O

5. Взаимодействие с основными оксидами (кислотные свойства):
Al2O3 + CaO  → Ca(AlO2)2

Интернет-источники

Источник

Амфотерные оксиды (имеющие двойственные свойства) – это в большинстве случаев оксиды металлов, которые обладают небольшой электроотрицательностью. В зависимости от внешних условий проявляют либо кислотные, либо оксидные свойства. Образуются эти оксиды переходными металлами, которые обычно проявляют следующие степени окисления: ll, lll, lV. 

Примеры амфотерных оксидов: цинка оксид (ZnO), хрома оксид lll (Cr2O3), алюминия оксид (Al2O3), олова оксид ll (SnO), олова оксид lV (SnO2), свинца оксид ll (PbO), свинца оксид lV (PbO2), титана оксид lV (TiO2), марганца оксид lV (MnO2), железа оксид lll (Fe2O3), бериллия оксид (BeO).

Реакции, характерные для амфотерных оксидов:

1. Эти оксиды могут реагировать с сильными кислотами. При этом образуются соли этих же кислот. Реакции такого типа являются проявлением свойств основного типа. Например: ZnO (оксид цинка) + H2SO4 (соляная кислота) → ZnSO4 (сульфат цинка) + H2O (вода).

2. При взаимодействии с сильными щелочами амфотерные оксиды и гидроксиды проявляют кислотные свойства. При этом двойственность свойств (то есть амфотерность) проявляется в образовании двух солей.

В расплаве при реакции с щелочью образуется соль средняя обычная, например:
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) → Na2ZnO2 (обычная средняя соль) + H2O (вода).
Al2О3 (оксид алюминия) + 2NaOH (гидроксид натрия) = 2NaAlO2 + H2O (вода).
2Al(OH)3 (алюминия гидроксид) + 3SO3 (оксид серы) = Al2(SO4)3 (алюминия сульфат) + 3H2O (вода).

В растворе амфотерные оксиды при реакции с щелочью образуют комплексную соль, например: Al2O3 (алюминия оксид) + 2NaOH (гидроксид натрия)+ 3H2O (вода) + 2Na(Al(OH)4) (комплексная соль тетрагидроксоалюминат натрия).

3. Каждый металл любого амфотерного оксида имеет свое координационное число. Например: для цинка (Zn) — 4, для алюминия (Al) — 4 или 6, для хрома (Cr) — 4 (редко) или 6.

4. Амфотерный оксид не реагирует с водой и не растворяется в ней.

Какие реакции доказывают амфотерность металла?

Условно говоря, амфотерный элемент может проявлять свойства как металлов, так и неметаллов. Подобная характерная особенность присутствует у элементов А-групп: Be (бериллий), Ga (галлий), Ge (германий), Sn (олово), Pb, Sb (сурьма), Bi (висмут) и некоторые другие, а также многие элементы Б-групп — это Cr (хром), Mn (марганец), Fe (железо), Zn (цинк), Cd (кадмий) и другие.

Докажем следующими химическими реакциями амфотерность химического элемента цинка (Zn):

1. Zn(OH)2 (цинка гидроксид) + N2O5 (пентаоксид диазота) = Zn(NO3)2 (нитрат цинка) + H2O (вода).
ZnO (оксид цинка) + 2HNO3 (азотная кислота) = Zn(NO3)2 (нитрат цинка) + H2O (вода).

б) Zn(OH)2 (цинка гидроксид) + Na2O (натрия оксид) = Na2ZnO2 (диоксоцинкат натрия)+ H2O (вода).
ZnO (оксид цинка) + 2NaOH (гидроксид натрия) = Na2ZnO2 (диоксоцинкат натрия) + H2O (вода).

В том случае, если элемент с двойственными свойствами в соединении имеет следующие степени окисления, его двойственные (амфотерные) свойства наиболее заметно проявляются в промежуточной стадии окисления.

Как пример можно привести хром (Cr). Этот элемент имеет следующие степени окисления: 3+, 2+, 6+. В случае +3 основные и кислотные свойства выражаются приблизительно в одинаковой степени, в то время как у Cr +2 преобладают основные свойства, а у Cr +6 — кислотные. Вот реакции, доказывающие данное утверждение:

Cr+2 → CrO (оксид хрома +2), Cr(OH)2 → CrSO4;
Cr+3 → Cr2O3 (оксид хрома +3), Cr(OH)3 (хрома гидроксид) → KCrO2 или же хрома сульфат Cr2(SO4)3; 
Cr+6 → CrO3 (оксид хрома +6), H2CrO4 → K2CrO4.

В большинстве случаев амфотерные оксиды химических элементов со степенью окисления +3 существуют в мета-форме. Как пример, можно привести: метагидроксид алюминия (хим. формула AlO(OH) и метагидроксид железа (хим. формула FeO(OH)).

Как получают амфотерные оксиды?

1. Наиболее удобный метод их получения заключается в осаждении из водного раствора с использованием гидрата аммиака, то есть слабого основания. Например:
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный раствор аммиака гидрата) = Al(OH)3 (амфотерный оксид) + 3NH4NO3 (реакция выполняется при двадцати градусах тепла).
Al(NO3)3 (нитрат алюминия) + 3(H2OxNH3) (водный раствор гидрата аммиака) = AlO(OH) (амфотерный оксид) + 3NH4NO3 + H2O (реакция осуществляется при 80 °C)

При этом в обменной реакции этого типа в случае избытка щелочей гидроксид алюминия не будет осаждаться. Это происходит по причине того, что алюминий переходит в анион из-за своих двойственных свойств: Al(OH)3 (алюминия гидроксид) + OH− (избыток щелочей) = [Al(OH)4]− (анион гидроксида алюминия).

Примеры реакций данного типа:
Al(NO3)3 (нитрат алюминия) + 4NaOH(избыток гидроксида натрия) = 3NaNO3 + Na(Al(OH)4). 
ZnSO4 (сульфат цинка) + 4NaOH(избыток гидроксида натрия) = Na2SO4 + Na2(Zn(OH)4).

Соли, которые при этом образуются, относятся к комплексным соединениям. Они включают в себя следующие анионы комплексные: (Al(OH)4)− и еще (Zn(OH)4)2−. Вот так называются эти соли: Na(Al(OH)4) — натрия тетрагидроксоалюминат, Na2(Zn(OH)4) — натрия тетрагидроксоцинкат. Продукты взаимодействия алюминиевых или цинковых оксидов с щелочью твердой называются по-другому: NaAlO2 — натрия диоксоалюминат и Na2ZnO2 — натрия диоксоцинкат.

Источник

Читайте также:  Какими свойствами обладает фермент

Анонимный вопрос  ·  30 мая 2019

30,5 K

Амфотерными называются элементы, которые в соединениях проявляют свойства металлов и неметаллов. К ним относятся элементы А-групп Периодической системы — Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп — Cr, Mn, Fe, Zn, Cd, Au и др.

Оксиды и гидроксиды этих соединений, соотвественно, будут амфотерными.

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

☘️Амфотерные оксиды — это оксиды, у которых элемент в степени окисления +3 или +4
Например, Al2O3, ТiO2, Cr2O3, Fe2O3, PbO2
☘️Но☝️
ZnO, BeO тоже амфотерные, хотя Zn и Be в степени окисления +2. Это нужно запомнить)
☘️Гидроксиды, которые соответствуют амфотерными оксидам, тоже амофотерны ????

Эффективный репетитор по математике, физике, химии. Автор книг и консультант по обучению…  ·  repetitor-5.ru

Из #викивпечку : Амфоте́рность (от др.-греч. ἀμφότεροι «двойственный; обоюдный») — способность некоторых химических веществ и соединений проявлять в зависимости от условий как кислотные, так и осно́вные свойства.
Похожее слово есть в биологии: «амфибия» — животное, которое может жить и в воде, и на суше. Амфи — и тот, и другой, био — жизнь. Живёт и там, и тут.
Амфотер… Читать далее

Что такое «оляция» и «оксоляция»?

Researcher, Institute of Physics, University of Tartu

Возьмем обычный гидроксид. Ну, скажем, гидроксид титана или ортотитановая кислота, кому как нравится. Формула Ti(OH)4. Т.е. условная молекула этого соединения содержит четыре ОН-группы, присоединенные к атому титана. Каждая из этих ОН-групп присоединена к титану так: Ti-OH. Это обычный вариант, обычная концевая («терминальная») ОН-группа, которая присоединена сигма-связью только к одному атому, как ей и положено.
Однако, у кислорода есть неподеленная электронная пара, которая может «сесть» на чью-нибудь незаполненную орбиталь по донорно-акцепторному механизму, а у титана есть куда ей сесть. При этом происходит образование мостиковой ОН-группы между двумя молекулами гидроксида титана (т.е. ОН-группа уже была по обычной сигма-связи соеденина с одним атомом титана, а теперь присоединилась неподеленной парой к еще одному. Выглядит это так: (HO)3Ti-O(H)-Ti(OH)4 . При этом мы видим, что мостиковый кислород имеет три связи, а один из атомов титана — пять. Такая мостиковая ОН-группа называется «ол-группа«, а процесс ее образования, которыя я описал выше — оляцией.
Это структура с формально трехвалентным кислородом и пятивалентным титаном является неустойчивой и довольно быстро переходит в более удобоваримую структуру с мостиковым атомом кислорода: (HO)3Ti-O(H)-Ti(OH)4 -> (HO)3Ti-O-Ti(OH)3 + H2O. Теперь, как мы видим, у всех всё в порядке — кислород двухвалентный, оба титана четырехвалентны, всё как обычно. Этот процесс называется оксоляцией, поскольку ол-группа превращается в мостиковую оксо-группу (-O-). Можно заметить, что отщепилась молекула воды и гидроксид как бы стал на шажок ближе к оксиду. Это будет совершенно справедливое замечание, поскольку конечным результатом оксоляции (далеко не всегда достигаемым, конечно) и будет оксид, у которого ОН-группы остались только на поверхности.

Процессы оляции-оксоляции характерны для амфотерных гидроксидов, а также для слабых кислот и оснований. Обычно происходят после их образования в результате гидролиза, то есть сначала из какой-то соли в результате гидролиза получается гидроксид чего-то, а потом постепенно он претерпевает процессы оляции-оксоляции, при этом из индивидуальных молекул этого гидроксида с одним центральным атомом получаются многоатомные (конденсированные) оксо-гидроксосоединения (это называют поликонденсацией). Именно в связи с этим процессом свежеосажденные гидроксиды гораздо более реакционно способны, чем состарившиеся. У преподавателей есть садистический эксперимент для первокурсников или старших школьников — всем известно, что гидроксид алюминия растворяется в избытке щелочи. Так вот надо аккуратно осадить его, потом оставить на некоторое время, а потом попросить студента растворить его в NaOH. Если студент не в курсе дела, то он будет его растворять до позеленения и навсегда потом запомнит, что такое оляция-оксоляция 🙂

Какие оксиды реагируют с водой?

С водой будут взаимодействовать кислотные и основные оксиды. Кислотные оксиды при взаимодействии с водой будут образовывать кислоты. Из основных оксидов с водой взаимодействуют оксиды щелочных и щелочно-земельных металлов.

Для каких элементов характерны летучие водородные соединения?

Автор проекта ChemistryToday, человек, заинтересованный химией и продвигающий её на…  ·  vk.com/chemtoday

Летучие водородные соединения (ЛВС) образуют, в основном, неметаллы: практически у каждого из них есть такие соединения — гидриды элемента или элемент’иды водорода.

Посмотрим на 2 период Таблицы Менделеева: ЛВС характерны для бора (различные бораны BnHm), углерода (вся органика! CxHy), азота (аммиак, например NH3), кислорода (вода!) и фтора (плавиковая кислота HF). Это как раз все неметаллы 2 периода (за исключением неона, благородного газа).

В 3 периоде всё то же самое: алюминий образует AlH3, алан, кремний — силан SiH4, фосфор — фосфин PH3, сера — сероводород H2S, хлор — хлороводород HCl.

Но так как при движении вниз по группе «металличность» элементов повышается, то для галлия (который под алюминием) уже гораздо менее характерно образование водородных соединений, тем более летучих, поэтому галлий уже выбывает из ЛВС неметаллов 4 периода. Следующий за ним — германий — образует герман GeH4, мышьяк — арсин AsH3, селен — селеноводород H2Se, бром — бромоводород HBr.

Все остальные также существуют: PbH4, SnH4, H2Te, SbH3, BiH3 (очень нестабилен), HI, HAt, H2Po.

Какая структурная формула оловянистой кислоты (H2SnO2)?

ALBA synchrotron, postdoc

Sn(OH)2 в свободном виде не существует. Бывает либо гель гидрата неопределённого состава, либо оксогидроксид Sn6O4(OH)4. Он состоит из кластеров состава Sn6O8, соединенных между собой водородными связями (на картинке не показаны).

Источник