Масса тела какие свойствами оно обладает

Отношение величины силы, действующей на тело, к приобретенному телом ускорению постоянно для данного тела. Масса тела и есть это отношение.

1. Масса=Сила/ускорение
m=F/a
 

Масса тела является неизменной характеристикой данного тела, не зависящей от его местоположения. Масса характеризует два свойства тела:

Инерция

Тело изменяет состояние своего движения только под воздействием внешней силы.

Тяготение

Между телами действуют силы гравитационного притяжения.

Эти свойства присущи не только телам, т.е. веществу, но и другим формам существования материи (например излучению, полям). Справедливо следующее утверждение:

Масса тела характеризует свойство любого вида материи быть инертной и тяжелой, т.е. принимать участие в гравитационных взаимодействиях.

Центр масс и система центра масс

В любой системе частиц имеется одна замечательная точка С- центр инерции, или центр масс, — которая обладает рядом интересных и важных свойств. Центр масс является точкой приложения вектора импульса системы , так как вектор любого импульса является полярным вектором. Положение точки С относительно начала О данной системы отсчета характеризуется радиусом-вектором, определяемым следующей формулой:

(4.8)

где — масса и радиус-вектор каждой частицы системы, M — масса всей

системы (рис. 4.3).

Импульс материальной точки, системы материальных точек и твердого тела.

Импульсом материальной точки называют величину равную произведению массы точки на ее скорость.

Обозначим импульс (его также называют иногда количеством движения) буквой . Тогда

. (2)

Из формулы (2) видно, что импульс — векторная величина. Так как m > 0, то импульс имеет то же направление, что и скорость.

Единица импульса не имеет особого названия. Ее наименование получается из определения этой величины:

[p] = [m] · [υ] = 1 кг · 1 м/с = 1 кг·м/с .

Момент импульса материальной точки относительно точки O определяется векторным произведением

, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.

Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):

.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:

.

Фундаментальные и нефундаментальные взаимодействия. Сила как мера взаимодействия тел. Свойства силы.

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

— гравитационного

— электромагнитного

— сильного

— слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Сила как мера взаимодействия тел

Сила — векторная величина, характеризующая механическое действие одного тела на другое, которое проявляется в деформациях рассматриваемого тела и изменении его движения относительно других тел.

Сила характеризуется модулем и направлением. Модуль и направление силы не зависят от выбора системы отсчета.

Понятие силы относится к двум телам. Всегда можно указать тело, на которое действует сила, и тело со стороны которого она действует.

Способы измерения силы:
-определение ускорения эталонного тела под действием данной силы;
— определение деформации эталонного тела.

Первый закон Ньютона

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения, на тело необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают инертностью. Инертность — это свойство тел сопротивляться изменению их текущего состояния. Величина инертности характеризуется массой тела.

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Системы отсчета, в которых выполняется первый закон Ньютона, называют инерциальными.

Или

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

18. Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Современная формулировка

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки;
— сила, приложенная к материальной точке;
— масса материальной точки.

Или в более известном виде:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней сил.

где — импульс точки,

где — скорость точки;

— время;

— производная импульса по времени.

Когда на тело действуют несколько сил, с учётом принципа суперпозиции второй закон Ньютона записывается:

Читайте также:  Какие металлы проявляют амфотерные свойства

или

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. Для скоростей, приближенных к скорости света, используются законы теории относительности.

Нельзя рассматривать частный случай (при ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

19. Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Современная формулировка

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.



Источник

Ìàññîé òåëà íàçûâàåòñÿ ôèçè÷åñêàÿ âåëè÷èíà, õàðàêòåðèçóþùàÿ åãî èíåðöèîííûå è ãðàâèòàöèîííûå ñâîéñòâà.

Èíåðöèîííûå ñâîéñòâà ìàññû â íüþòîíîâîé ìåõàíèêå (ò. å. ïðè ñêîðîñòÿõ, ñóùåñòâåííî ìåíüøèõ ñêîðîñòè ñâåòà) õàðàêòåðèçóþòñÿ ñîîòíîøåíèÿìè ìåæäó ìàññîé m, èìïóëüñîì p òåëà, äåéñòâóþùåé íà òåëî ñèëîé F è åãî óñêîðåíèåì:

×åì áîëüøå ìàññà òåëà, òåì áîëåå îíî èíåðòíî. Ìàññû òåë ìîæíî ñðàâíèâàòü ïî óñêîðåíèÿì, êîòîðûå òåëà ïðèîáðåòàþò ïðè âçàèìîäåéñòâèè äðóã ñ äðóãîì. ×åì ìåíüøå ìåíÿåòñÿ ñêîðîñòü òåëà ïðè âçàèìîäåéñòâèè, òåì îíî èíåðòíåå, çíà÷èò òåì áîëüøå åãî ìàññà, è íàîáîðîò.

Ãðàâèòàöèîííûå ñâîéñòâà ìàññû. Ïî òåîðèè Íüþòîíà ìàññà – èñòî÷íèê ñèëû âñåìèðíîãî òÿãîòåíèÿ:

ãäå m1. m2 – ìàññû äâóõ òåë, r – ðàññòîÿíèå ìåæäó òåëàìè, G – ãðàâèòàöèîííàÿ ïîñòîÿííàÿ.

Èç èíåðöèîííûõ è ãðàâèòàöèîííûõ ñâîéñòâ ñëåäóåò, ÷òî óñêîðåíèå ñâîáîäíîãî ïàäåíèÿ íå çàâèñèò îò ìàññû ïàäàþùåãî òåëà è åãî äðóãèõ õàðàêòåðèñòèê (îáúåìà, ïëîòíîñòè è ò.ä.). Ýòó çàêîíîìåðíîñòü íàçûâàþò ðàâåíñòâîì èíåðòíîé è ãðàâèòàöèîííîé ìàññ. Íà ñàìîì äåëå ðå÷ü èäåò îá îäíîé è òîé æå ìàññå – ôèçè÷åñêîé âåëè÷èíå, êîòîðàÿ ÿâëÿåòñÿ èñòî÷íèêîì äâóõ ôèçè÷åñêèõ ÿâëåíèé – èíåðöèè è ãðàâèòàöèè.

 êëàññè÷åñêîé ôèçèêå ìàññà ÿâëÿåòñÿ ìåðîé êîëè÷åñòâà âåùåñòâà., ñîäåðæàùåãîñÿ â òåëå. Çäåñü ñïðàâåäëèâ çàêîí ñîõðàíåíèÿ ìàññû: ìàññà èçîëèðîâàííîé ñèñòåìû òåë íå ìåíÿåòñÿ ñî âðåìåíåì è ðàâíà ñóììå ñîñòàâëÿþùèõ åå ìàññ òåë.

Åäèíèöåé ìàññû â ÑÈ ïðèíÿò êèëîãðàìì (1 êã).

  

Êàëüêóëÿòîðû ïî ôèçèêå

Ðåøåíèå çàäà÷ ïî ôèçèêå, ïîäãîòîâêà ê ÝÃÅ è ÃÈÀ, ìåõàíèêà òåðìîäèíàìèêà è äð.
Êàëüêóëÿòîðû ïî ôèçèêå
  

Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ

Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ôèçèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ
Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ
  

Âåñ â äèíàìèêå.

Âåñîì òåëà íàçûâàþò ñèëó , ñ êîòîðîé òåëî âñëåäñòâèå åãî ïðèòÿæåíèÿ ê çåìëå äåéñòâóåò íà îïîðó èëè ïîäâåñ.
Âåñ â äèíàìèêå.
  

Ñèëà òÿæåñòè â äèíàìèêå.

Ñèëîé òÿæåñòè íàçûâàþò ñèëó, ñ êîòîðîé Çåìëÿ ïðèòÿãèâàåò ê ñåáå òåëî, íàõîäÿùååñÿ âáëèçè åå ïîâåðõíîñòè .
Ñèëà òÿæåñòè â äèíàìèêå.
  

Ïëîòíîñòü âåùåñòâà â äèíàìèêå.

Ïëîòíîñòü âåùåñòâà – ôèçè÷åñêàÿ âåëè÷èíà , ïîêàçûâàþùàÿ, ÷åìó ðàâíà ìàññà â åäèíèöå îáúåìà ýòîãî âåùåñòâà.
Ïëîòíîñòü âåùåñòâà â äèíàìèêå.
  

Íåâåñîìîñòü â äèíàìèêå.

Íåâåñîìîñòü – ñîñòîÿíèå, â êîòîðîì íàõîäèòñÿ ìàòåðèàëüíîå òåëî, êîòîðîå ñâîáîäíî äâèæåòñÿ â ïîëå òÿãîòåíèÿ Çåìëè (èëè äðóãîãî íåáåñíîãî òåëà) ïîä äåéñòâèåì òîëüêî ñèë òÿãîòåíèÿ .
Íåâåñîìîñòü â äèíàìèêå.

Источник

Удивительно, как много людей, употребляя слова «масса» и «вес», не понимают их различие с точки зрения физики и подразумевают одно и то же. Между тем, это различие принципиально и огромно…

Масса

Начнем с массы. Масса определяет инерционные свойства тела. Что это означает? Инертность – это способность тела сопротивляться изменению его состояния движения под действием силы. Попробуйте остановить катящийся по инерции футбольный мяч. А потом – катящийся с той же скоростью по инерции автомобиль. В последнем случае сделать это гораздо тяжелее, потому что автомобиль обладает большим количеством материи. И можно сказать, что автомобиль обладает большей массой. Измеряется масса в килограммах, а обозначается буквой m. Масса тела всегда постоянна.

Вес

Что касается веса, то это сила. Как и любая другая сила, это векторная величина (имеющая направление действия) и измеряется она в ньютонах. По определению, вес – сила, с которой тело действует на опору или подвес:

Если человек массой 70 кг неподвижно стоит на полу, какие силы на него действуют с точки зрения классической механики? Всего две. Одна из них – сила тяжести, направленная вертикально вниз. Эта та сила, с которой Земля притягивает человека, и она равна произведению массы человека m на ускорение свободного падения g (для Земли – 9,81 м/с2, округлим это значение до 10). Таким образом, эта сила будет равна mg=70*10=700Н. Часто эту силу также измеряют в килограмм-силах, кгс. Ее величина равна весу тела массой в 1 кг, поэтому обыватели часто измеряют вес в килограммах и именно поэтому часто возникает путаница с весом и массой.

Вторая сила – это сила реакции опоры N. Человек давит на пол, а пол этому сопротивляется – ровно с такой же силой, как и сила тяжести. Эта сила направлена в противоположное направление и равна по величине силе тяжести. Суммарная же сила равна F=mg-N=0.

Читайте также:  Какие есть свойства алгоритма как

Вы можете спросить – зачем всё это, если сила тяжести и вес – одно и то же? Ничего подобного, это абсолютно разные вещи, просто в данном примере они совпадают. Рассмотрим космонавта, находящегося во взлетающей ракете. На него также действует сила тяжести и сила реакции опоры, но плюс к этому добавляется сила, толкающая космонавта вверх вместе с ракетой. В этом случае сила реакции опоры N будет превышать силу тяжести mg, и вес космонавта возрастет, он испытает перегрузку, хотя сила тяжести и масса космонавта не изменились.

На самом деле, вес для физиков является незначащим термином. С точки зрения физики его правильней называть просто силой, а слово «вес» – это просто дань языковой традиции.

В земных условиях люди обычно приравнивают вес и массу, да и шкала у всех весов откалибрована для земной силы тяжести. Однако, взаимодействие веса и массы очень интересно наблюдать в условиях, отличных от Земли. Так, на Луне сила тяжести меньше земной в 6 раз, соответственно, вес космонавта также будет меньше в 6 раз. При этом масса его останется неизменной. Если мы попробуем забить на Луне гвоздь в доску, то молоток будет весить в 6 раз меньше. Но при ударе по шляпке, он будет воздействовать на гвоздь с той же силой, что и на Земле, потому что масса молотка не изменилась.

Итог. Масса – неотделимое свойство любого тела. Если спортивное ядро массой 7 кг тяжело метнуть на Земле, то точно также тяжело его будет метнуть и в условиях невесомости, несмотря на то, что его вес будет равен нулю.

Если тебе понравилась статья, подписывайся на канал, расскажи о нем в соцсетях, а уж мы постараемся не ударить в грязь лицом )

Источник

У этого термина существуют и другие значения, см. Вес (значения).

Не следует путать с массой.

Вес — сила, с которой тело действует на опору (или подвес, или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести[1][2].
Единица измерения веса в Международной системе единиц (СИ) — ньютон, иногда используется единица СГС — дина.

Свойства[править | править код]

Вес тела, покоящегося в инерциальной системе отсчёта, равен силе тяжести, действующей на тело, и пропорционален массе и ускорению свободного падения в данной точке:

Широтное уменьшение силы тяжести mg

Ускорение свободного падения зависит от высоты над земной поверхностью и — ввиду несферичности Земли, а также ввиду её вращения — от географических координат точки измерения. В результате суточного вращения Земли существует широтное уменьшение веса: на экваторе вес примерно на 0,3 % меньше, чем на полюсах. Другим фактором, влияющим на значение и, соответственно, вес тела, являются гравитационные аномалии, обусловленные особенностями строения земной поверхности и недр в окрестностях точки измерения. Если тело находится вблизи другой планеты, а не Земли, то ускорение свободного падения будет определяться массой и размерами этой планеты, наряду с расстоянием между её поверхностью и телом.

При движении системы «тело» — «опора или подвес» относительно инерциальной системы отсчёта с ускорением вес перестаёт совпадать с силой тяжести:

Например, если ускорение (независимо от скорости) лифта направлено вверх, то вес находящегося в нём груза увеличивается, а если вниз, то уменьшается. Ускорение за счёт вращения Земли не входит в , оно уже учтено в . Состояние отсутствия веса (невесомость) наступает вдали от притягивающего объекта, либо когда тело находится в свободном падении, то есть при .

Комментарий[править | править код]

Тело массой , вес которого анализируется, может стать субъектом приложения дополнительных сил, косвенно обусловленных присутствием гравитационного поля, в том числе силы Архимеда и трения. При этом воздействие изучаемого тела на опоры и подвесы будет опосредовано наличием указанных привходящих факторов.[прояснить]

В официальном определении, приведённом в преамбуле, отсутствует конкретизация, должны ли учитываться подобные факторы. Не оговорено также, обязательно ли роль опоры-подвеса должно играть упругое твёрдое тело и что если опор несколько. Кроме того, в публикациях встречаются и неэквивалентные дефиниции веса[3][4][5]. Отсюда, несмотря на ясность природы фигурирующих сил, возникают терминологические неопределённости.[источник не указан 807 дней]

Так, при учёте только вклада силы тяжести покоящемуся на наклонной поверхности телу приписывается направленный по нормали к опоре вес , где — угол наклона[4]. Но если учесть ещё и силу трения покоя (а она, по третьему закону Ньютона, приложена и к телу, и к опоре), то вектор веса станет равным [3]. Аналогично с силой Архимеда: в жидкости или газе с плотностью на тело действует подъёмная сила (где — объём тела), из-за которой, скажем, воздействие тела на неровное[6] дно водоёма ослабляется. Трактуя эту ситуацию, можно либо заявить, что вес тела снижается на вес вытесненного объёма воды, либо считать, что вес по-прежнему составляет и есть ещё подлежащая отдельному анализу архимедова сила.[источник не указан 807 дней]В целом, в литературе доминирует подход[1][7][нет в источнике], при котором вес тела в покое вблизи Земли всегда приравнивается . Этот подход означает, что вес тела с точностью до знака равен векторной сумме всех сил (кроме силы тяжести), действующих на тело, включая силы Архимеда («жидкая опора»[3]) и трения, при учёте всех имеющихся опор-подвесов совместно.

Для многих задач описанные неопределённости несущественны, так как чаще всего рассматривается неподвижное тело на сухой горизонтальной поверхности.[источник не указан 807 дней]

Читайте также:  Какими полезными свойствами обладает лен

Значимость[править | править код]

Понятие «вес» в физике не является необходимым[8]. В принципе, можно вообще отменить этот термин и говорить либо о «массе», либо о «силе»[9] такой-то природы. Использование понятия «вес» во многом связано просто с привычкой[8] и языковыми традициями.

Очевидно более содержательной величиной является суммарная сила воздействия на опору, в нерусскоязычных изданиях иногда именуемая «кажущимся весом» (англ. apparent weight, фр. poids apparent). Знание этой величины, например, может помочь оценить способность конструкции удержать изучаемое тело в данных условиях. В ряде случаев — скажем, в ситуации привязанного на улице шарика, наполненного гелием, — кажущийся вес может оказаться направленным против вектора ввиду влияния .

Измерение[править | править код]

Вес можно измерять с помощью пружинных весов, которые могут служить и для косвенного измерения массы, если их соответствующим образом проградуировать; рычажные весы в такой градуировке не нуждаются, так как в этом случае сравниваются массы, на которые действует одинаковое ускорение свободного падения или сумма ускорений в неинерциальных системах отсчёта. При взвешивании с помощью технических пружинных весов вариациями ускорения свободного падения обычно пренебрегают, так как влияние этих вариаций обычно меньше практически необходимой точности взвешивания.

На результате измерений может в некоторой степени сказаться сила Архимеда, если при взвешивании с помощью рычажных весов сравниваются тела с различной плотностью.

Вес и масса[править | править код]

В физике вес и масса — разные понятия. Вес — векторная величина, сила, с которой тело действует на горизонтальную опору или вертикальный подвес. Масса — скалярная величина, мера инертности тела (инертная масса) либо заряд гравитационного поля (гравитационная масса). У этих величин отличаются и единицы измерения (в системе СИ масса измеряется в килограммах, а вес — в ньютонах). Возможны ситуации с нулевым весом и ненулевой массой одного и того же тела, например, в условиях невесомости у всех тел вес равен нулю, а масса у каждого тела своя. И если в состоянии покоя тела показания весов будут нулевыми, то при ударе по весам тел с одинаковыми скоростями воздействие будет разным (см. закон сохранения импульса, закон сохранения энергии).

Вместе с тем строгое различение понятий веса и массы принято в основном в науке и технике, а во многих повседневных ситуациях слово «вес» продолжает использоваться, когда фактически речь идёт о «массе». Например, мы говорим, что какой-то объект «весит один килограмм», несмотря на то, что килограмм представляет собой единицу массы[10]. Кроме того, термин «вес» в значении «масса» традиционно использовался в цикле наук о человеке — в словосочетании «вес тела человека», вместо современного «масса тела человека»[11]. В связи с этим метрологические организации отмечают, что неправильное использование термина «вес» вместо термина «масса» должно прекращаться и во всех тех случаях, когда имеется в виду масса, должен использоваться термин «масса»[12][13].

История[править | править код]

III Генеральная конференция по мерам и весам, проведённая в 1901 году, подчеркнула, что термин «вес» обозначает величину той же природы, что термин «сила». Конференция определила вес тела как произведение массы тела на ускорение, обусловленное гравитационным притяжением. Стандартный вес тела конференцией был определён как произведение массы тела на стандартное ускорение, обусловленное гравитационным притяжением. В свою очередь для стандартного ускорения было принято значение 980,665 см/с2[14].

Примечания[править | править код]

  1. 1 2 Рудой Ю. Г. Вес // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 262. — 707 с. — 100 000 экз.
  2. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2005. — Т. I. Механика. — С. 373. — 560 с. — ISBN 5-9221-0225-7.
  3. 1 2 3 И. Е. Каган «Вес тела» (IX класс) // Фізiка: праблемы выкладання. – 2001. – № 3. – С. 58-74.
  4. 1 2 С. В. Задорожная «Вес тела» // Сайт педаг. сообщ. «Урок.рф» (2016).
  5. ↑ Во многих иноязычных публикациях вес (см., например, начало немецкой версии статьи) синонимизируется с силой тяжести, что в российской педагогике считается ошибкой.
  6. ↑ Неровность нужна для подтекания воды под опору, см. Л. Г. Асламазов: Гидростатика // Квант. – 1972. – № 12. (с. 57, рис. 9ав).
  7. Allen L. King. Weight and weightlessness (англ.) // American Journal of Physics : journal. — 1963. — Vol. 30. — P. 387. — doi:10.1119/1.1942032. — Bibcode: 1962AmJPh..30..387K.
  8. 1 2 В. Г. Зубов. Механика. М.: Наука, 1978. — 352 с. // см. § 71, с. 176: «В механике понятие веса является совершенно лишним. Но так как это слово простое, привычное, то им часто пользуются».
  9. ↑ The National Standard of Canada, CAN/CSA-Z234.1-89 Canadian Metric Practice Guide, January 1989: 5.7.3. Considerable confusion exists in the use of the term «weight». <…> In scientific and technical work, the term «weight» should be replaced by the term «mass» or «force», depending on the application.
  10. ↑ Ранее в технике широко использовалась единица силы килограмм-сила — одна из основных единиц системы МКГСС.
  11. ↑ Медицинская энциклопедия на Академике.
  12. ↑ ISO 80000-4:2006, Quantities and units — Part 4: Mechanics.
  13. ↑ SI Units: Mass (англ.). Weights and Measures. NIST. Дата обращения 7 декабря 2016.
  14. ↑ Declaration on the unit of mass and on the definition of weight; conventional value of g (англ.). Resolution of the 3rd CGPM (1901). BIPM. Дата обращения 1 ноября 2015.

См. также[править | править код]

  • Масса
  • Геоид
  • Гравиметрия
  • Фигура Земли
  • Весы

Источник