Какую зависимость сопротивления проводника от его размеров и свойств

Какую зависимость сопротивления проводника от его размеров и свойств thumbnail

ЗАКОН ОМА: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.

По другому: чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Подключая к полюсам источника тока различные провода, Ом установил, что сила тока убывает с увеличением длины провода и уменьшением площади его поперечного сечения, а также зависит от вещества провода, то есть «Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника». Он нашёл ряд веществ в порядке возрастания «сопротивления» .

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 0,0175, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 ом. Удельное сопротивление алюминия равно 0,029, удельное сопротивление железа — 0,135, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:
R = р l / S,
где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм2.

Площадь поперечного сечения круглого проводника вычисляется по формуле:
S = πd^2 / 4
где π — постоянная величина, равная 3,14; d — диаметр проводника.

А так определяется длина проводника:
l = S R / p.

Еще одной причиной, влияющей на сопротивление проводников, является температура.
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1°C. Сопротивление жидких проводников и угля с увеличением температуры уменьшается.
Электронная теория cтроения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается.

ЗАДАЧА:
R=0,36 ОМ
l=20000 м
р=7,8*10^3

S = р l / R = 7,8*10^3*20000/0.36=4.33*10^8 (мм^2)
m=p*l*S=7,8*10^3*20000*4.33*10^8=6.75*10^16 (кг)

Ответ: 6.75*10^16 кг

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 июля 2019;
проверки требуют 3 правки.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление, Ом;
U — разность электрических потенциалов (напряжение) на концах проводника, В;
I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

История[править | править код]

В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.

Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает.[2]

Единицы и размерности[править | править код]

Размерность электрического сопротивления в Международной системе величин: dim R = L2MT −3I −2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются[3]:

  • статом (в СГСЭ и гауссовой системе, 1 statΩ = (109c−2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер);
  • абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер).

Размерность сопротивления в СГСЭ и гауссовой системе равна TL−1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT−1 (то есть совпадает с размерностью скорости, см/с)[4].

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом−1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс[5].

Физика явления[править | править код]

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника[править | править код]

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

Из формулы

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Сопротивление тела человека[править | править код]

  • Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм[6]. Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
  • Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц[7].

Метрологические аспекты[править | править код]

Приборы для измерения сопротивления[править | править код]

  • Омметр
  • Измерительный мост
  • Амперметр и вольтметр (сопротивление находится по формуле)

Средства воспроизведения сопротивления[править | править код]

  • Магазин сопротивлений — набор резисторов
  • Катушки электрического сопротивления

Государственный эталон сопротивления[править | править код]

  • ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.

Статическое и динамическое сопротивление[править | править код]

В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно
малого приращения напряжения к соответствующему приращению тока.

См. также[править | править код]

  • Сверхпроводимость
  • Закон Ома
  • Закон Барлоу
  • Удельное электрическое сопротивление
  • Электрическая проводимость
  • Отрицательное сопротивление
  • Внутреннее сопротивление
  • Импеданс
  • Волновое сопротивление
  • Активное сопротивление
  • Реактивное сопротивление

Примечания[править | править код]

Ссылки[править | править код]

  • Таблица удельного сопротивления проводников
  • Электрическое сопротивление проводников

Литература[править | править код]

  • В. Г. Герасимов, Э. В. Кузнецов, О. В. Николаева. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.

Источник

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Сопротивление обозначается латинскими буквами R или r.

За единицу электрического сопротивления принят Ом.

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита ρ. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:

R = р l / S,

где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм2.

Еще одной причиной, влияющей на сопротивление проводников, являетсятемпература.

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов.

ЭДС источника тока. Закон Ома для полной цепи с ЭДС.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника(ЭДС):

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сопротивление r неоднородного участка можно рассматривать как внутреннее сопротивление источника тока.

63. Соединение проводников.

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников сила тока во всех проводниках одинакова:

По закону Ома, напряжения U1 и U2 на проводниках равны

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

U = U1 + U2 = I(R1 + R2) = IR,

где R – электрическое сопротивление всей цепи. Отсюда следует:



Источник

Сопротивление различных проводников зависит от материала, из которого они изготовлены.

Можно проверить это практически на следующем опыте.

zavisimost-soprotivleniya-ot-materiala

Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника

Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.

Из этого следует, что сопротивление медного проводника меньше, чем стального, а сопротивление стального проводника меньше, чем никелинового.

Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.

Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.

Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм2 при температуре +20 С°.

Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.

Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм2/м, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,0175 Ом.

Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.

Удельные сопротивления материалов, наиболее часто применяемых в электротехнике

МатериалУдельное сопротивление,  Ом*мм2/м
 Серебро0,016
 Медь0,0175 
 Алюминий0,0295 
 Железо0,09-0,11
 Сталь0,125-0,146
 Свинец0,218-0,222
 Константан0,4-0,51
 Манганин0,4-0,52
 Никелин0,43
 Вольфрам0,503
 Нихром1,02-1,12
 Фехраль1,2
 Уголь10-60

Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).

Разберем теперь, как влияют размеры проводника, т. е. длина и поперечное сечение, на величину его сопротивления.

Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.

 zavisimost-soprotivleniya-ot-dliny

Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника

Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.

Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..

Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.

Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.

Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.

Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.

sosudy-s-vodoj

Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой

Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:

 электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..

Математически эта зависимость выражается следующей формулой:

 soprotivlenie-provodnika-formula

где R—сопротивление проводника в Ом;

ρ — удельное сопротивление материала в Ом*мм2/м;

l — длина проводника в м;

S—площадь поперечного сечения проводника в мм2.

Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле

sechenie-provodnika-formula1

где π—постоянная величина, равная 3,14;

d—диаметр проводника.

Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.

Так, например, длина проводника определяется по формуле:

dlina-provodnika-formula

Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:

ploshchad-secheniya-provodnika-formula

Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:

udelnoe-soprotivlenie-provodnika-formula

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти  материал, обладающий таким удельным сопротивлением.  

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник