Какой металл в наибольшем количестве содержится в земной коре в

Какой металл в наибольшем количестве содержится в земной коре в thumbnail

Первые пять мест в земной коре (по массе вещества) занимают следующие элементы: кислород, кремний, алюминий, железо и кальций. На 1 тонну земной коры приходится кислорода 466 кг,
кремния 277,2 кг, алюминия 81,3 кг, железа 50 кг и кальция 36,3 кг. Общая масса этих пяти элементов в одной тонне земной коры составляют около 92% в массе земной коры. На остальные 101 элемент приходится чуть больше 8% ее массы.

Примечательно, что из этих пяти элементов два, занимающих оба первые места, вовсе не являются металлами, а их суммарное количество составляет почти три четверти массы земной коры. Таким образом, на долю алюминия, железа и всех остальных 77 металлов приходится меньше одной четвертой части массы земной коры.

Итак, из восьми десятков металлов, наибольшее количество в земной коре алюминия (более 8%). Парадоксально, но факт, что металл, которого больше всего в земной коре, был открыт намного позже большинства других.

Содержащие алюминий квасцы были известны в древности. О них упоминается в сочинениях древнеримского историка Плиния Старшего. Кстати, квасцы по латыни и назывались «алумен». Средневековый ученый, врач и естествоиспытатель Парацельс нашел, что квасцы представляют собой «соль некоей квасцовой земли». Через девять лет после смерти Парацельса химик Маркграф сумел выделить «квасцовую землю» — глинозем (окись алюминия Al2O3). Во времена Ломоносова было высказано предположение о том, что в составе квасцов должен быть неизвестный химический элемент. Поисками его и занялся в 1808 году молодой английский ученый Гемфри Деви. Он даже назвал этот элемент алюминием, но получить алюминий так и не смог. 17 лет алюминий существовал лишь в названии. В 1825 году датчанин Эрстед и в 18127 году немец Велер сумели получить первые крупицы этого металла. И только в 1864 году французскому химику Сент-Клер-Девилю удалось получить первый промышленный алюминий. Через 11 лет русский химик Н. Н. Бекетов создал более экономичный способ получения алюминия из глинозема. Этот способ применяли во Франции и Германии до конца XIX века. Но полученный и по этому способу алюминий был по стоимости равноценен золоту.

Наполеон III и члены его семьи, например, во время банкетов пользовались алюминиевыми вилками и ложками, в то время как всем остальным оставалось пользоваться золотыми и серебряными приборами, как более дешевыми.

Лишь после того как русский капитан А. Ф. Можайский создал первый в мире аэроплан, а другой русский капитан О. С. Костович попытался вместо паровой машины поставить на управляемый аэростат двигатель внутреннего сгорания, судьба алюминия была решена. Оказалось, что это именно тот металл, который нужен авиации. Строительство самолетов в первом десятилетии нашего века вызвало к жизни развитие металлургии алюминия, совершенствование его производства и резкое снижение стоимости.

В 18®9 году английское Королевское общество чествовало Дмитрия Ивановича Менделеева в связи с 20-летием открытия им периодического закона. Менделееву были преподнесены весы, изготовленные из алюминия и золота.

В 1604 году русская научная общественность готовилась к 70-летнему юбилею Д. И. Менделеева. Была собрана большая сумма денег. Деньги были переведены ювелирной фирме. Ей было заказано изготовить большую вазу с розами. Лепестки роз требовалось изготовить из золота, а вазу и листья —  из алюминия. Два драгоценных металла!

Теперь после железа, алюминий — самый дешевый металл.

Мировое производство алюминия резко увеличилось за последние годы. Оно намного опередило производство меди, олова1, свинца и других металлов. После чугунного и стального, алюминиевое литье теперь самое распространенное во всем мире.

Источник

Металлы представляют собой группу элементов, которые обладают такими уникальными свойствами, как электропроводность, высокая теплопередача, положительный коэффициент сопротивления, характерный блеск и относительная пластичность. Данный вид веществ является простым по химическим соединениям.

Классификация по группам

Металлы относятся к самым распространенным материалам, которые используются человечеством на протяжении всей его истории. Большинство из них находится в средних слоях земной коры, но есть и те, что спрятаны глубоко в горных залежах.

На данный момент металлы занимают большую часть таблицы Менделеева (94 из 118 элементов). Из официально признанных стоит отметить следующие группы:

1. Щелочные (литий, калий, натрий, франций, цезий, рубидий). При контакте с водой они образуют гидроксиды.

2. Щелочноземельные (кальций, барий, стронций, радий). Отличаются плотностью и твердостью.

самый распространенный металл в земной коре

3. Легкие (алюминий, свинец, цинк, галлий, кадмий, олово, ртуть). Из-за незначительной плотности часто используются в сплавах.

4. Переходные (уран, золото, титан, медь, серебро, никель, железо, кобальт, платина, палладий и пр.). Обладают изменчивой степенью окисления.

5. Полуметаллы (германий, кремний, сурьма, бор, полоний и др.). В своей структуре имеют кристаллическую ковалентную решетку.

6. Актиноиды (америций, торий, актиний, берклий, кюрий, фермий и пр.).

7. Лантаноиды (гадолиний, самарий, церий, неодим, лютеций, лантан, эрбий и др.).

Стоит отметить, что есть металлы в земной коре и такие, которые не определены в группы. К ним относят магний и бериллий.

Самородные соединения

В природе существует отдельный класс кристаллохимической кодификации. К таким элементам относят самородные металлы. Это минералы по составу между собой не связанные. Чаще всего самородные металлы в природе образуются в результате геологических процессов.

самородные металлы в природе

В кристаллическом состоянии в земной коре известны 45 веществ. Большинство из них в природе встречается крайне редко, отсюда и их высокая стоимость. Доля таких элементов составляет всего 0,1 %. Стоит отметить, что нахождение этих металлов также является трудоемким и недешевым процессом. Он основывается на использовании атомов с устойчивыми оболочками и электронами.

Самородные металлы называются также благородными. Для них характерны химическая инерция и устойчивость соединений. К таковым относят золото, палладий, платину, иридий, серебро, рутений и пр. Чаще всего в природе встречается медь. Железо в самородном состоянии присутствует в основном в горных залежах в виде метеоритов. Самыми редкими элементами группы являются свинец, хром, цинк, индий и кадмий.

Основные свойства

Практически все металлы в нормальных условиях отличается твердостью и стойкостью. Исключение — франций и ртуть, щелочные металлы. Температура плавления для всех элементов группы разная. Ее диапазон колеблется от -39 до +3410 градусов по Цельсию. Самым устойчивым к плавлению считается вольфрам. Его соединения теряют стойкость только при температуре выше +3400 С. Из легкорасплавляемых металлов следует выделить свинец и олово.

Читайте также:  Какие микроэлементы содержаться в меду

нахождение металлов в природе

Также элементы делятся относительно плотности (легкие и тяжелые) и пластичности (твердые и мягкие). Все металлические соединения отлично проводят ток. Данное свойство обуславливается наличием кристаллических решеток с активными электронами. Максимальную проводимость имеют медь, серебро и алюминий, чуть меньшую – натрий. Стоит отметить и высокие термические свойства металлов. Наилучшим теплопроводником считается серебро, наихудшим – ртуть.

Металлы в окружающей среде

Чаще всего такие элементы можно встретить в виде соединений и руд. Металлы в природе образуют сульфиты, оксиды, карбонаты. Для очищения соединений сперва необходимо выделить их из состава руды. Следующим шагом будет легирование и финальная обработка.

В промышленной металлургии различаются черные и цветные руды. Первые строятся на основе железных соединений, вторые – на прочих металлах. Драгоценными металлами считаются платина, золото и серебро. Большая их часть находится в земной коре. Тем не менее, малая доля приходится и на морскую воду.

Есть благородные элементы даже в живых организмах. В человеке содержится около 3 % металлических соединений. По большей степени в организме находятся натрий и кальций, которые выступают в роли межклеточного электролита. Магний необходим для нормальной работы ЦНС и мышечной массы, железо полезно для крови, медь – для печени.

металлы в природе

Нахождение металлических соединений

Большинство элементов располагается под верхним слоем грунта повсеместно. Самый распространенный металл в земной коре – это алюминий. Его процентное содержание варьируется в пределах 8,2 %. Найти самый распространенный металл в земной коре несложно, так как он встречается в виде руд.

Железо и кальций в природе встречают чуть реже. Их процентное содержание равно 4,1 %. Далее идут магний и натрий – по 2,3 %, калий – 2,1 %. Остальные металлы в природе занимают не более 0,6 %. Примечательно, что магний и натрий в равной степени можно добывать как в земле, так и в морской воде.

металлы в земной коре

Металлические элементы в природе встречаются в виде руд или в самородном состоянии, как медь или золото. Есть вещества, которые нужно получать из оксидов и сульфидов, например, гематит, каолин, магнетит, галенит и пр.

Производство металлов

Процедура добычи элементов сводится к извлечению полезных ископаемых. Нахождение металлов в природе в виде руд является самым простым и распространенным процессом в широкой промышленности. Для поиска кристаллических залежей используется специальное геологическое оборудование, анализирующее состав веществ на конкретном участке земли. Реже нахождение металлов в природе сводится к банальному открыто-подземному методу.

После добычи наступает этап обогащения, когда из исходного минерала выделяется рудный концентрат. Для отличия элементов используют смачивание, электрический ток, химические реакции, термообработку. Чаще всего выделение металлический руды происходит в результате плавления, то есть разогрева с восстановлением.

Добыча алюминия

Данным процессом занимается цветная металлургия. По масштабам потребления и производства она является лидером среди прочих отраслей тяжелой промышленности. Самый распространенный металл в земной коре очень востребован в современном мире. По объему производства алюминий уступает только стали.

добыча алюминия

Больше всего данный элемент используется в авиационной, автомобильной и электротехнической промышленности. Примечательно, что самый распространенный металл в земной коре можно получить и «искусственным» путем. Для такой химической реакции потребуются бокситы. Из них формируется глинозем. При соединении этого вещества с угольными электродами и фтористой солью под действием электрического тока можно получить чистейшую алюминиевую руду.

Страной-лидером среди производителей данного компонента является Китай. В год там выплавляется до 18,5 млн тонн металла. Компанией-лидером в аналогичном рейтинге по добыче алюминия является российско-швейцарское объединение UC RUSAL.

Применение металлов

Все элементы группы отличаются прочностью, непроницаемостью и относительной устойчивостью к температурному воздействию. Именно поэтому металлы столь распространены в повседневной жизни. Сегодня из них делают электрические провода, резисторы, технику, предметы обихода.

Металлы являются идеальным конструкционными и инструментальными материалами. В строительстве используют чистые и комбинированные сплавы. В машиностроении и авиации главными соединениями являются сталь и более твердые связи.

Источник

Редкоземе́льные элеме́нты (аббр. РЗЭ, TR, REE, REM) — группа из 17 элементов, включающая скандий, иттрий, лантан и лантаноиды (церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций).

Редкоземельные элементы проявляют между собой большое сходство химических и некоторых физических свойств, что объясняется почти одинаковым строением наружных электронных уровней их атомов. Все они металлы серебристо-белого цвета, при том все имеют сходные химические свойства (наиболее характерна степень окисления +3). Редкоземельные элементы — металлы, их получают восстановлением соответствующих оксидов, фторидов, электролизом безводных солей и другими методами.

По химическим свойствам и совместному нахождению в природе делятся на подгруппы:

  • иттриевую (Y, La, Gd — Lu)
  • цериевую (Ce — Eu)

По атомной массе лантаноиды делятся на:

  • лёгкие (Ce — Eu)
  • тяжёлые (Gd — Lu)

Термин[править | править код]

Название «редкоземельные» (от лат. terrae rarae — «редкие земли») было дано в связи с тем, что они:

  • сравнительно редко встречаются в земной коре (содержание (1,6-1,7)⋅10−2% по массе)
  • образуют тугоплавкие, практически не растворимые в воде оксиды (такие оксиды в начале XIX века и ранее назывались «землями»).

Название «редкоземельные элементы» исторически сложилось в конце XVIII — начале XIX века, когда ошибочно считали, что минералы, содержащие элементы двух подсемейств, — цериевого (лёгкие — La, Се, Рг, Nd, Sm, Eu) и иттриевого (тяжёлые — Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) — редко встречаются в земной коре. Однако по запасам сырья редкоземельные элементы не являются редкими, по суммарной распространённости они превосходят свинец в 10 раз, молибден — в 50 раз, вольфрам — в 165 раз.

Принятые в современной научной литературе сокращения:

  • TR — лат. Terrae rarae — редкие земли.
  • REE — англ. Rare-earth element — редкоземельные элементы.
  • REM — англ. Rare-earth metal — редкоземельные металлы.
  • РЗЭ — Редкоземельные элеме́нты

История[править | править код]

В 1794 году финский химик Юхан Гадолин, исследуя рудные образцы вблизи шведского местечка Иттербю (в будущем в честь этой деревни были названы редкоземельные элементы иттрий (Y), тербий (Tb), эрбий (Er) и иттербий (Yb), обнаружил неизвестную до того «редкую землю», которую назвал по месту находки иттриевой.

Читайте также:  Аскорбиновая кислота в каких продуктах содержится

Позже, немецкий химик Мартин Клапрот разделил эти образцы на две «земли», для одной из которых он оставил имя иттриевой, а другую назвал цериевой (в честь открытой в 1801 году малой планеты Церера, которая, в свою очередь, была названа по имени древнеримской богини Цереры).

Немного спустя шведский учёный К. Мосандер сумел выделить из того же образца ещё несколько «земель». Все они оказались оксидами новых элементов, получивших название редкоземельных. Ввиду сложности разделения оксидов, ложные объявления об открытии новых редкоземельных элементов исчислялись десятками. Совместно к 1907 году химики обнаружили и идентифицировали всего 16 таких элементов. На основе изучения рентгеновских свойств всем элементам были присвоены атомные номера 21(скандий), 39 (иттрий) и от 57 (лантан) до 71 (лютеций), кроме 61.

По возрастанию атомного веса они расположились следующим образом:

Вначале ячейка под номером 61 была незаполненной, в дальнейшем это место занял прометий, выделенный из продуктов деления урана и ставший 17-м членом этого семейства.

Химические свойства[править | править код]

Оксиды редкоземельных элементов. По часовой стрелке от центрального первого: празеодим, церий, лантан, неодим, самарий, гадолиний

Скандий, иттрий и лантаноиды имеют высокую реакционную способность. Химическая активность этих элементов особенно заметна при повышенных температурах. При нагревании до 300—400 °C металлы реагируют даже с водородом, образуя RH3 и RH2 (символ R выражает атом редкоземельного элемента). Эти соединения достаточно прочные и имеют солевой характер. При нагревании в кислороде металлы легко реагируют с ним, образуя оксиды: R2O3, CeO2, Pr6O11, Tb4O7 (лишь только Sc и Y при помощи образования защитной оксидной плёнки являются стойкими на воздухе, даже при нагревании до 1000 °C). Во время горения данных металлов в атмосфере кислорода выделяется большое количество тепла. При сгорании 1 г лантана выделяется 224,2 ккал тепла. Для церия характерной особенностью является свойство пирофорности — способность искриться при разрезании металла на воздухе.

Лантан, церий и другие металлы уже при обычной температуре реагируют с водой и кислотами-неокислителями, выделяя водород. Из-за высокой активности к атмосферному кислороду и воде куски лантана, церия, празеодима, неодима и европия следует хранить в парафине, остальные из редкоземельных металлов окисляются плохо (за исключением самария, который покрывается плёнкой оксидов, однако не полностью разъедается ей) и их можно хранить в нормальных условиях без противоокислительных веществ.

Химическая активность редкоземельных металлов неодинакова. От скандия до лантана химическая активность возрастает, а в ряду лантан — лютеций — снижается. Отсюда следует, что наиболее активным металлом является лантан. Это обуславливается уменьшением радиусов атомов элементов от лантана до лютеция с одной стороны, и от лантана до скандия — с другой.

Эффект «лантаноидной контракции» (сжатия) приводит к тому, что следующие после лантаноидов элементы (гафний, тантал, вольфрам, рений, осмий, иридий, платина) имеют уменьшенные радиусы атомов на 0,2—0,3 Å отсюда и очень схожие их свойства со свойствами соответствующих элементов пятого периода.

В элементах — скандий, иттрий, лантан — d-оболочка предпоследнего электронного слоя только начинает образовываться, поэтому радиусы атомов и активность металлов в этой группе возрастают сверху вниз. Этим свойством группа отличается от других побочных подгрупп металлов, у которых порядок изменения активности противоположный.

Поскольку радиус атома иттрия (0,89 Å) близок к радиусу атома гольмия (0,894 Å), то по активности этот металл должен занимать одно из предпоследних мест. Скандий же из-за своей активности должен располагаться после лютеция. В этом ряду ослабляется действие металлов на воду.

Редкоземельные элементы чаще всего проявляют степень окисления +3. Из-за этого наиболее характерными являются оксиды R2O3 — твёрдые, крепкие и тугоплавкие соединения. Будучи основными оксидами, они для большинства элементов способны соединяться с водой и создавать основания — R(OH)3. Гидроксиды редкоземельных металлов малорастворимы в воде. Способность R2O3 соединяться с водой, то есть основная функция, и растворимость R(OH)3 уменьшаются в той же последовательности, что и активность металлов: Lu(OH)3, а особенно Sc(OH)3, проявляют некоторые свойства амфотерности. Так, кроме раствора Sc(OH)3 в концентрированном NaOH, получена соль: Na3Sc(OH)6·2H2O.

Поскольку металлы данной подгруппы активны, а их соли с сильными кислотами растворимы, они легко растворяются и в кислотах-неокислителях, и кислотах-окислителях.

Все редкоземельные металлы энергично реагируют с галогенами, создавая RHal3 (Hal — галоген). С серой и селеном они также реагируют, но при нагревании.

Нахождение в природе[править | править код]

Как правило, редкоземельные элементы встречаются в природе совместно. Они образуют весьма прочные окислы, галоидные соединения, сульфиды. Для лантаноидов наиболее характерны соединения трёхвалентных элементов. Исключение составляет церий, легко переходящий в четырёхвалентное состояние. Кроме церия четырёхвалентные соединения образуют празеодим и тербий. Двухвалентные соединения известны у самария, европия и иттербия. По физико-химическим свойствам лантаноиды весьма близки между собой. Это объясняется особенностью строения их электронных оболочек.

Суммарное содержание редкоземельных элементов составляет более 100 г/т. Известно более 250 минералов, содержащих редкоземельные элементы. Однако к собственно редкоземельным минералам могут быть отнесены только 60 — 65 минералов, в которых содержание Ме2О3 превышает 5 — 8 %. Главнейшие минералы редких земель — монацит (Ce, La)PO4, ксенотим YPO4, бастнезит Ce[CO3](OH, F), паризит Ca(Ce, La)2[CO3]3F2, гадолинит Y2FeBe2Si2O10, ортит (Ca, Ce)2(Al, Fe)3Si3O12(O, OH), лопарит (Na, Ca, Ce)(Ti, Nb)O3, эшинит (Ce, Ca, Th)(Ti, Nb)2O6. Наиболее распространён в земной коре церий, наименее — тулий и лютеций. По правилам Комиссии по новым минералам и названиям минералов (КНМНМ) Международной минералогической ассоциации (IMA) минералы с большим количеством редкоземельного элемента (или близких к редкоземельным иттрия и скандия) в составе получают специальный суффикс, «уточнитель Левинсона»[1], например, известны два минерала: гагаринит-(Y) с преобладанием иттрия и гагаринит-(Ce) с преобладанием церия.

Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с щелочными породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной щёлочностью — иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты — цериевую. Некоторая дифференциация редких земель отмечается и в экзогенных условиях. Изоморфное замещение редких земель между собой, несмотря на разницу в их порядковых номерах, обусловлено явлениями «лантаноидного сжатия»: с увеличением порядкового номера происходит достройка внутренних, а не внешних электронных орбит, в результате чего объём ионов не увеличивается.

Читайте также:  В каких статьях тк рф содержится ссылка на положения коллективных договоров

Селективное накопление редкоземельных элементов в минералах и горных породах может быть обусловлено различиями в их радиусах ионов. Дело в том, что радиусы ионов лантаноидов закономерно уменьшаются от лантана к лютецию. Вследствие этого возможно преимущественное изоморфное замещение в зависимости от степени различия в размерах замещённых ионов редкоземельных элементов. Так, в скандиевых, циркониевых и марганцевых минералах могут присутствовать только редкие земли ряда лютеций — диспрозий; в урановых минералах преимущественно накапливаются минералы средней части ряда (иттрий, диспрозий, гадолиний); в ториевых минералах должны концентрироваться элементы цериевой группы; в состав стронциевых и бариевых минералов могут входить только элементы ряда европий — лантан.

Производство[править | править код]

История добычи, тысячи тонн, 1950—2000.

До начала 1990-х годов основным производителем были США [2] (месторождение Маунтин-Пасс). В 1986 году в мире произвели 36500 тонн оксидов редкоземельных металлов. Из них в США 17000 тонн, СССР 8500 тонн, Китай 6000 тонн. В 90-х годах в Китае происходит модернизация отрасли с участием государства. С середины 1990-х годов КНР становится крупнейшим производителем. В 2007—2008 годах в мире добывалось по 124 тыс. тонн редкоземельных элементов в год. Лидировал Китай, добывая до 120 тыс. тонн, Баян-Обо, компания Inner Mongolia Baotou Steel Rare-Earth. В Индии 2700 тонн, Бразилии 650 тонн. В 2010-х годах Китай проводит политику ограничения добычи и экспорта редкоземельных металлов, что стимулировало рост цен и активизацию добычи в других странах.[3]

На конец 2008 года данные по запасам следующие: Китай 89 млн тонн, СНГ 21 млн тонн, США 14 млн тонн, Австралия (5,8 млн тонн), Индия 1,3 млн тонн, Бразилия 84 тыс. тонн.[4]

В 2011 году японская группа обнаружила залежи редкоземельных руд на дне Тихого океана, проверив образцы грунта из 80 мест с глубин от 3.5 до 6 км. По некоторым оценкам, эти залежи могут содержать до 80-100 млрд тонн редкоземельных материалов[5][6]. Концентрация элементов в руде оценивалась на уровне до 1-2,2 частей на тысячу для иттрия и до 0,2 — 0,4 частей на тысячу для тяжёлых РЗЭ; лучшие подземные месторождения имеют на порядок более высокую концентрацию[7][8].

В СССР и России

В СССР промышленная добыча редкоземельных металлов велась с 1950-х годов в РСФСР, Казахстане, Киргизии, Эстонии и Украине и достигала 8500 тонн в год.[2] После развала СССР и промышленного коллапса производственные цепочки получения редкозёмов начали распадаться.[9] Этому способствовала и относительная бедность руд основных месторождений.

Обширная отечественная сырьевая база редкоземельных металлов привязана главным образом к апатит-нефелиновым месторождениям в Мурманской области[10].

Основным производителем редкоземельной продукции в России является Соликамский магниевый завод. Предприятие производит фактически полуфабрикаты — карбонаты и оксиды самария, европия, гадолиния, лантана, неодима, прометия, церия.[10]

В 2010 году Росатом и Ростех создали рабочую группу по редкоземельным элементам.[2] В 2013 году Минпромторг принимает программу по развитию добычи редкоземельных элементов стоимостью 145 млрд руб. до 2020 года. В 2016 году обнуляется налог на добычу полезных ископаемых для редкоземельных элементов[11].

В 2014 году началась разработка проектов освоения крупнейшего в мире месторождения Томтор в Якутии и строительства нового Краснокаменского гидрометаллургического комбината в Забайкальском крае[12]. Начало производства намечено на 2023 год. Планируется производить около 14 000 тонн феррониобия и около 16 000 тонн оксидов РЗМ[13]. В 2016 году на новгородском заводе компании Акрон запущен цех переработки апатитовых руд мощностью 200 тонн разделённых оксидов редкоземельных элементов в год[14][15][16]. В 2018 году в подмосковном городе Королёв было запущено экспериментальное производство с получением оксидов индивидуальных элементов: La2O3, Ce2O3, Nd2O3 мощностью 130 тонн [17]. Планируется возобновить производство полного цикла мощностью до 3600 тонн разделённых оксидов на базе Соликамского магниевого завода в Пермском крае[18].

Применение[править | править код]

Редкоземельные элементы используют в различных отраслях техники: в радиоэлектронике, приборостроении, атомной технике, машиностроении, химической промышленности, в металлургии и др. Широко применяют La, Ce, Nd, Pr в стекольной промышленности в виде оксидов и других соединений. Эти элементы повышают светопрозрачность стекла. Редкоземельные элементы входят в состав стёкол специального назначения, пропускающих инфракрасные лучи и поглощающих ультрафиолетовые лучи, кислотно- и жаростойких стёкол. Большое значение получили редкоземельные элементы и их соединения в химической промышленности, например, в производстве пигментов, лаков и красок, в нефтяной промышленности как катализаторы. Редкоземельные элементы применяют в производстве некоторых взрывчатых веществ, специальных сталей и сплавов, как газопоглотители. Монокристаллические соединения редкоземельных элементов (а также стёкла) применяют для создания лазерных и других оптически активных и нелинейных элементов в оптоэлектронике. На основе Nd, Y, Sm, Er, Eu с Fe-B получают сплавы с рекордными магнитными свойствами (высокие намагничивающая и коэрцитивная силы) для создания постоянных магнитов огромной мощности, по сравнению с простыми ферросплавами.

Потребление редкоземельных металлов в России сейчас составляет порядка 2000 тонн в год. Примерно 70% используется в электронике, несколько сотен тонн в год также необходимо для выпуска катализаторов для нефтепереработки, меньшее количество применяется при производстве магнитов и в оптике. В целом лишь около четверти редкоземельных металлов в России используется для производства продукции гражданского назначения, остальное — для выпуска изделий военно-технического назначения.
Основные потребители редкоземельных металлов в России — предприятия, входящие в структуру «Ростеха»: «Росэлектроника», Объединённая двигателестроительная корпорация», холдинг «Швабе» и т.д.[10]

Физиологическое действие и токсикология редкоземельных металлов[править | править код]

Многие редкоземельные элементы не играют ярко выраженной биологической роли в организме человека (например, скандий, иттербий, лютеций, тулий, и другие).
Системная токсичность многих редкоземельных металлов низкая.

См. также[править | править код]

  • Лантаноиды
  • Распространённость элементов
  • Мишметалл

Примечания[править | править код]

Литература[править | править код]

  • Каширцев В. А., Лифшиц С. Х., Сукнев В. С. и др. Угли Ленского бассейна как потенциальный источник редкоземельных элементов // Наука — производству. 2004. № 9. С. 52-54.

Ссылки[править | править код]

    Источник