Какой металл обладает магнитными свойствами

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 апреля 2018;
проверки требуют 8 правок.

Ферромагнетик — упорядочивание магнитных моментов.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля.

Свойства ферромагнетиков[править | править код]

  • Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
  • При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
  • Для ферромагнетиков характерно явление гистерезиса.
  • Ферромагнетики притягиваются магнитом.

Представители ферромагнетиков[править | править код]

Среди химических элементов[править | править код]

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. — Ферромагнитные металлы

МеталлыTc, КJs0, Гс
Fe10431735,2
Co14031445
Ni631508,8
Gd2891980
МеталлыTc, КJs0, Гс
Tb2232713
Dy871991,8
Ho203054,6
Er19,61872,6

Js0 — величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. Tc — точка Кюри (критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком).

Для 3d-металлов и для гадолиния (Gd) характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков — неколлинеарная (спиральная и др.; см. Магнитная структура).

Среди соединений[править | править код]

Ферромагнитами также являются многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения хрома (Cr) и марганца (Mn) с неферромагнитными элементами (так называемые гейслеровы сплавы), например, сплав Cu2MnAl, соединения ZrZn2 и ZrxM1−xZn2 (где М — это Ti, Y, Nb или Hf), Au4V, Sc3In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH3).

СоединениеTc, КСоединениеTc, К
Fe3AI743TbN43
Ni3Mn773DyN26
FePd3705EuO77
MnPt3350MnB578
CrPt3580ZrZn235
ZnCMn3353Au4V42—43
AlCMn3275Sc3ln5—6

Другие известные[править | править код]

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стёклах, халькогенидах (сульфидах, селенидах, теллуридах) и т. п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, оксид хрома(IV) и ионные соединения типа La1−xCaxMnO3(0,4 > x > 0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrB3 и т. п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q составляет порядка 100 К.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Хёрд К. М. Многообразие видов магнитного упорядочения в твёрдых телах
  • Аннаев Р. Г. Магнето-электрические явления в ферромагнитных металлах. — Ашхабад, 1951.
  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Невзгодова Е. — Современная экспериментальная физика. — 3-е изд. — СПб., 2009.

Источник

Магниты — это материалы, которые создают магнитные поля, которые привлекают определенные металлы. У каждого магнита есть северный и южный полюс. Обратные полюса привлекают, в то время как полюса отталкиваются.

В то время как большинство магнитов изготовлены из металлов и металлических сплавов, ученые разработали способы создания магнитов из композиционных материалов, таких как магнитные полимеры.

Что создает магнетизм?

Магнетизм в металлах создается неравномерным распределением электронов в атомах некоторых металлических элементов.

Неравномерное вращение и движение, вызванные этим неравномерным распределением электронов, сдвигают заряд внутри атома назад и вперед, создавая магнитные диполи.

Когда магнитные диполи выравниваются, они создают магнитный домен, локализованную магнитную область с северным и южным полюсами.

В немагнитных материалах магнитные домены сталкиваются в разных направлениях, отменяя друг друга. В то время как в намагниченных материалах большинство этих доменов выровнены, указывая в том же направлении, что создает магнитное поле. Чем больше областей, которые выравнивают друг друга, тем сильнее магнитная сила.

Типы магнитов:

  • Постоянные магниты (также известные как жесткие магниты) — это те, которые постоянно производят магнитное поле. Это магнитное поле вызвано ферромагнетизмом и является самой сильной формой магнетизма.
  • Временные магниты (также известные как мягкие магниты) являются магнитными только при наличии магнитного поля.
  • Электромагниты требуют, чтобы электрический ток проходил через их провода катушки, чтобы создать магнитное поле.

Развитие магнитов:

Греческие, индийские и китайские писатели задокументировали базовые знания о магнетизме более 2000 лет назад. Большая часть этого понимания была основана на наблюдении за влиянием магния (естественного магнитного минерала железа) на железо.

Ранние исследования магнетизма были проведены еще в XVI веке, однако развитие современных высокопрочных магнитов происходило не раньше 20-го века.

До 1940 года постоянные магниты использовались только в базовых приложениях, таких как компасы и электрические генераторы, называемые магнитосами. Разработка магнитов из алюминия и никеля-кобальта (Alnico) позволила постоянным магнитам заменить электромагниты в двигателях, генераторах и громкоговорителях.

Создание магнитов самария-кобальта (SmCo) в 1970-х годах создало магниты с вдвое большей магнитной плотностью энергии, чем любой ранее доступный магнит. Меньше более мощные магниты способствовали развитию многих известных нам электронных устройств.

К началу 1980-х годов дальнейшие исследования магнитных свойств редкоземельных элементов привели к открытию магнитов неодима и железа-бора (NdFeB).Магниты NdFeB снова привели к удвоению магнитной энергии над магнитами SmCo.

Магниты из редкой земли теперь используются во всем: от наручных часов и iPad до гибридных двигателей автомобилей и ветрогенераторов.

Магнетизм и температура:

Металлы и другие материалы имеют разные магнитные фазы, в зависимости от температуры окружающей среды, в которой они расположены. В результате металл может проявлять более одной формы магнетизма.

Железо, например, теряет свой магнетизм, становясь парамагнитным при нагревании выше 1418 ° F (770 ° C).

Температура, при которой металл теряет магнитную силу, называется ее температурой Кюри.

Железо, кобальт и никель — единственные элементы, которые в металлической форме имеют температуры Кюри выше комнатной температуры. Таким образом, все магнитные материалы должны содержать один из этих элементов.

Общие ферромагнитные металлы и их температуры кюри:

Вещество Температура Кюри
Железо (Fe) 1418 ° F (770 ° C)
Кобальт (Со) 2066 ° F (1130 ° C)
Никель (Ni) 676. 4 ° F (358 ° C)
Гадолиний 66 ° F (19 ° C)
Диспрозий -301. 27 ° F (-185. 15 ° C)
Читайте также:  Какие свойства таблеток ибупрофен

Источники:
How Stuff Works, Inc. Как работают магниты.
// science. Как это работает. ком / magnet1. HTM
Wikipedia. Температура Кюри.
// ru. википедия. орг / вики / Curie_temperature

Источник

Какие металлы, кроме железа, притягиваются магнитом?

Возможность магнита притягивать к себе различные металлические предметы наверняка хорошо знакома каждому. Присутствие их в повседневной жизни остается практически незамеченным, например, в виде различных изображений на дверцах холодильника. Не говоря уже о применении магнитов в медицине и других отраслях. Как устроен магнит и какие вещества он притягивает, помимо железа?

Что такое магнит и как он устроен?

Магнит – это тело, которое обладает собственным магнитным полем. Магниты бывают нескольких видов:

  1. Постоянные – изделия, которые после однократного намагничивания сохраняют данное свойство. Магниты разделяются на несколько подвидов в зависимости от силы и других параметров.
  2. Временные – функционируют по принципу постоянных, но лишь тогда, когда располагаются в сильном магнитном поле. Например, изделия из так называемого мягкого железа (гвозди, скрепки и т.п.).
  3. Электромагниты представляют собой провода, плотно намотанные на каркас. Как правило, такое устройство оснащено железным сердечником. Работает оно лишь при условии прохождения по проводу электрического тока.

Постоянный магнит – наиболее привычный и распространенный. Для его изготовления чаще всего используют следующие сочетания материалов:

  • неодим-железо-бор;
  • альнико или сплав ЮНДК (железо, алюминий, никель, кобальт);
  • самарий-кобальт;
  • ферриты (соединения оксидов железа и других металлов-ферримагнетиков).

Магнетизм

Любой магнит имеет южный и северный полюс. Одинаковые полюса отталкиваются, а противоположные – притягиваются.

Интересный факт: магниты зачастую изготавливаются в виде подковы. Это делается для того, чтобы полюса располагались максимально близко друг к другу. Таким образом, создается сильное магнитное поле, которое способно притягивать более крупные части металла.

Почему магнит притягивает лишь определенные вещества?

Принцип его работы построен на создании магнитного поля при помощи движущихся электронов. В целом электрон является простейшим магнитом. А любая заряженная частица, находящаяся в движении, образует магнитное поле. Если движущихся частиц много, а их перемещение происходит вокруг одной оси, получается тело с магнитными свойствами.

Почему в таком случае магнит не притягивает все вещества подряд? В состав атома входит ядро, а также электроны, вращающиеся вокруг него. У электронов есть специальные уровни, по которым они вращаются, или орбиты. На каждом таком уровне расположено по 2 электрона. Причем вращаются они в разных направлениях.

Однако есть вещества под названием ферромагнетики. Некоторые электроны у них непарные. Соответственно, определенное их количество может вращаться в одном и том же направлении. Так создается магнитное поле вокруг каждого атома вещества.

Обычно атомы находятся в произвольном порядке. В таком случае поля уравновешивают друг друга. Но если же направить магнитные поля всех атомов в одном направлении, получается магнит. Примечательно, что притягиваться могут разные металлы и другие вещества, но намного слабее по сравнению с ферромагнетиками. Чтобы ощутить притяжение, необходимо задействовать очень сильный магнит.

Направление магнитного поля

К ферромагнетикам относятся такие металлы, как железо, кобальт, никель, гадолиний, тербий, диспрозий, гольмий, эрбий. Также аналогичными свойствами характеризуются некоторые металлические сплавы и соединения. Количество ферромагнетиков неметаллического происхождения не так велико или пока мало изучено. К ним относится, например, оксид хрома.

Магнитной восприимчивостью характеризуются вещества (преимущественно металлы), которые обладают определенной структурой. Их называют ферромагнетиками – это вещества, у которых магнитные поля атомов складываются в одном направлении. Помимо железа, к ферромагнетикам относятся кобальт, никель, тербий, гадолиний, диспрозий, гольмий, эрбий. Также магнит притягивает некоторые сплавы и даже неметаллические вещества – например, оксид хрома.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Поделиться:

Источник

Магнетит
Магнетит
Формула Fe3O4
Молекулярная масса 231,54
Примесь Mg, Zn, Mn, Ni, Cr, Ti, V, Al
Статус IMA Действителен
Класс Окислы и гидроокислы
Подкласс Сложные окислы
Семейство Шпинели
Группа Ферришпинели
Цвет Железно-чёрный
Цвет черты Чёрная
Блеск Металлический
Прозрачность Непрозрачен
Твёрдость 5,5—6 по шкале Мооса
Микротвёрдость 792
Хрупкость умеренно хрупкий
Спайность Несовершенная
Излом раковистый
Плотность 4,9—5,2 г/см³
Электропроводность Низкая
Температура плавления 1951—1957 (с разложением) °C
Точечная группа m3m (4/m 3 2/m)
Пространственная группа Fd3m (F41/d 3 2/m)
Сингония кубическая
Параметры ячейки 0,8397 нм
Число формульных единиц (Z) 8
Оптический тип изотропный
Показатель преломления 2,42
Двулучепреломление отсутствует
Оптический рельеф очень высокий
Цвет в отраженном свете серый с коричневатым оттенком
Внутренние рефлексы отсутствуют
 Медиафайлы на Викискладе

Магнети́т (устаревший синоним — магни́тный железня́к[1]) FeO·Fe2O3 — широко распространённый минерал чёрного цвета из класса оксидов, природный оксид железа(II,III). Происхождение названия твердо не установлено. Возможно, минерал назван в честь Магнеса — легендарного пастуха, впервые нашедшего природный магнитный камень, притягивающий железо, на горе Ида (Греция), либо от античного города Магнесия в Малой Азии.

Свойства минерала[править | править код]

Морфология кристаллов[править | править код]

Образует кристаллы кубической сингонии, пространственная группа F d3m, параметры ячейки a = 0,8397 нм, Z = 8 (структура шпинели). Элементарная ячейка увеличивается при замещении Fe2+ на марганец; замещение Fe2+ на Co2+, Ni2+, а также Fe3+ на Al3+ и Cr3+, вызывает уменьшение размера ячейки.

Отмечена зависимость элементарной ячейки от происхождения магнетита: наиболее высокие значения a свойственны магнетиту метаморфических образований, наименьшие — магнетиту эффузивных пород[2].

Кристаллохимическая структура представляет собой каркас, состоящий из тетраэдрических и октаэдрических групп ионов кислорода, в которых расположены соответственно ионы трёхвалентного и двухвалентного железа[3]. Кристаллы обычно октаэдрические, реже додекаэдрические и очень редко кубического облика. Двойники нередки, иногда неделимые двойники уплощены[2].

Некоторые магнетиты имеют значительное количество ультра- и микропор. Суммарный объем пор зависит от условий образования, в частности. от температуры. Например средняя пористость магнетита из уральских месторождений магматического типа равна 2,6 %, а из контактово-метасоматических месторождений — 6,19 %. Магнетит ранней генерации обладает пористостью 4,4 %, а магнетит поздней генерации — 9,35 %. Наблюдалась почти в два раза большая пористость центральных частей некоторых частей кристаллов магнетита по сравнению с их периферическими частями, чем обусловлено избирательное изменение центральных частей кристаллов[4].

Физические свойства и константы[править | править код]

Излом раковистый. Хрупок. Твёрдость 5,5—6. Микротвёрдость по Бови и Тейлору 535—695 кгс/мм2, по Янгу и Миллмэну 490—660 кгс/мм2, по Гершойгу 412—689 кгс/мм2 при нагрузке на 100 г. Удельный вес 4,8—5,3. Цвет железно-чёрный, иногда с синеватой побежалостью на гранях кристаллов. Черта чёрная. Блеск металлический, иногда матовый[5].

Читайте также:  У какого элемента лития или натрия более выражены металлические свойства

Полупроводник. Электропроводность низкая. Истинная удельная электропроводность монокристаллического магнетита максимальна при комнатной температуре (250 Ом−1·см−1), она быстро снижается при понижении температуры, достигая значения около 50 Ом−1·см−1 при температуре перехода Вервея (англ.)русск. (фазового перехода от кубической к низкотемпературной моноклинной структуре, существующей ниже TV = 120—125 К)[6]. Электропроводность моноклинного низкотемпературного магнетита на 2 порядка ниже, чем кубического (~1 Ом−1·см−1 при TV); она, как и у любого типичного полупроводника, очень быстро уменьшается с понижением температуры, достигая нескольких единиц ×10−6 Ом−1·см−1 при 50 К. При этом моноклинный магнетит, в отличие от кубического, проявляет существенную анизотропию электропроводности — проводимость вдоль главных осей может отличаться более чем в 10 раз. При 5,3 К электропроводность достигает минимума ~10−15 Ом−1·см−1 и растёт при дальнейшем понижении температуры. При температуре выше комнатной электропроводность медленно уменьшается до ≈180 Ом−1·см−1 при 780—800 К, а затем очень медленно растёт вплоть до температуры разложения[7].

Кажущаяся величина электропроводности поликристаллического магнетита в зависимости от наличия трещин и их ориентировки может отличаться в сотни раз.

Сильно магнитен; некоторые магнетиты полярно магнитны (естественные магниты). Точка Кюри для магнетита из различных месторождений колеблется от 550 до 600 K, среднее значение около 575 K (ниже её минерал ферромагнитен, выше — парамагнитен). С уменьшением величины зёрен магнитность возрастает, также возрастает остаточная намагниченность. Может изменять показания компаса. По данному признаку его можно найти: стрелка компаса показывает на магнетит и его залежи.

В ориентированном магнитном поле при охлаждении до 78 K кубическая ячейка магнетита переходит в ромбическую или в ячейку более низкой сингонии[4].

Может истираться в песок, который не теряет магнитных свойств. При поднесении магнита магнитный песок притягивается к полюсам магнита. Из-за большой плотности, инертности и нетоксичности используется как наполнитель в спортивных утяжелителях[источник не указан 1483 дня].

Соотношение размеров элементарной ячейки и содержания некоторых окислов в магнетите

aМесторождение
0,83872,550,75Филаборва, провинция Лимпопо (ЮАР)
0,83891,730,45Пудепупт, провинция Мпумаланга (ЮАР)
0.83941,480,38Сибаса, область Зотпансберг
0,83861,050,071,76Эмалахлени, провинция Мпумаланга (ЮАР)
0,83920,0950,46Майнвил (штат Нью-Йорк, США)
0,83960,670,09Барбертон (ЮАР)

Макроскопическая характеристика[править | править код]

Непрозрачен. В тончайших шлифах просвечивает. Изотропен. В отражённом свете в полированном шлифе серый с заметным коричневатым оттенком, в лучах ртутно-кварцевой лампы тёмно-серый. Отражающая способность 21 % для любого света по Рамдору; по Бови для белого света 21,1 %, для оранжевого 20,9 %.

Травлением HCl часто выявляется зональное строение зерен; иногда оно заметно без травления. Изредка наблюдается концентрически-зональная коллиморфная структура, иногда двойники. Некоторые зёрна и кристаллы магнетита в отражённом свете оказываются состоящими из буровато-серой и синевато-серой разностей. Первая из них по оптическим свойствам близка к обычному магнетиту. Вторая наблюдается в виде каёмок около зёрен первой или образует в них зоны и прожилки; обладает несколько повышенной отражательной способностью (22—23 %), более высоким рельефом, плохо травится HCl. Различие в составе этих разностей магнетита не выявлено[4].

Химический состав и свойства[править | править код]

Теоретический состав: FeO — 31,03 %; Fe2O3 — 68,97 %. Обычно магнетит содержит изоморфные примеси Ti, V, Mn, Mg, Al, Cr и др.; при повышенном содержании примеси выделяют разновидности магнетита (титаномагнетит, хроммагнетит и т. д.). Имеются данные, что содержание в магнетите титана зависит от условий образования и в частности от температуры. Раннемагматические магнетиты характеризуются повышенным содержанием хрома. Для магнетитов рудных выделений отмечается повышенное содержание хрома и ванадия по сравнению с акцессорными магнетитами.

Обнаружена прямая линейная корреляция между содержанием ванадия и титана в магнетитах. На Урале магнетиты из гранитоидов, связанных с габбро или с основными эффузивами, отличаются от магнетитов из пород гранитных формаций повышенным содержанием ванадия и титана.

Более низкотемпературные магнетиты содержат больше марганца, цинка и ванадия и меньше никеля, магния, а также других элементов-примесей. Кальций типичен для магнетита пегматито-пневмалитовых тел[8].

Растворимость увеличивается при применении различных кислот в следующем порядке: H3PO4, H2SO4, HCl, HNO3.

Трудно растворяется в соляной кислоте (порошок заметно растворяется). Травится концентрированной соляной кислотой,особенно с электрическим током; другие стандартные реактивы не действуют. Полностью разлагается при сплавлении с KHSO4. Даёт микрохимическую реакцию на c KCNS на фильтровальной бумаге.

Перед паяльной трубкой не плавится. В окислительном пламени вначале превращается в маггемит, затем в гематит, теряя магнитные свойства.

Форма нахождения и генезис[править | править код]

Распространён весьма широко, образует большие скопления и рудные залежи. Встречается в виде зернистых агрегатов, отдельных кристаллов и друз; сравнительно редко в виде колломорфных метаколлоидных агрегатов, оолитов, пизолитов, дендритов (в изверженных породах), волокнистых и сажистых выделениях.

Экзогенный магнетит изредка образует конкреции радиально-лучистого строения с поперечником до 15—20 см и агрегаты игольчатых индивидов[2].

Происхождение[править | править код]

Магнетит в отличие от гематита образуется при относительно низком парциальном давлении кислорода. Встречается в месторождениях различных генетических типов, а также как акцессорный минерал в различных горных породах.

В магматических горных породах он обычно наблюдается в виде вкрапленности. С основными породами (габбро) нередко генетически связаны магматические месторождения титаномагнетита в виде неправильной формы скоплений и жил[9]. Сравнительно редко магнетитовые месторождения приурочены к кислым и щелочным породам. В крупнейших магнетитовых месторождениях Швеции руды залегают среди сиенит-порфиров. В тесном прорастании с апатитом и реже с гематитом, магнетит образует залежи мощностью от 10 до 150 метров. Сиенит-порфиры тоже содержат магнетит, который образует как равномерную вкрапленность в породе (магнетит-сиенитовый порфир), так и неправильные округлые обособления и прожилки[10].

В незначительных количествах он присутствует во многих пегматитах в парагенезисе с биотитом, сфеном, апатитом и другими минералами[9].

В контактово-метасоматических образованиях он часто играет весьма существенную роль, сопровождаясь гранатами, пироксенами, хлоритами, сульфидами, кальцитом и другими минералами. Известны крупные месторождения, образовавшиеся на контакте известняков с гранитами и сиенитами[9]. По минеральным ассоциациям можно выделить три типа метасоматических месторождений[10].

  1. Магнетит ассоциирует со скаполитом, в очень незначительном количестве наблюдается пироксен, сфен и апатит. Магнетит заполняет промежутки между зернами скаполита или образует в них мелкие включения. В результате замещения известняков образуются массивные магнетитовые руды, а при замещении вулканических пород, роговиков и гранитоидов — вкрапленные скаполито-магнетитовые руды. Скаполит часто замещается альбитом, образуются своеобразные магнетито-полешпатовые породы.
  2. Магнетит ассоциирует с пироксеном и гранатом; в той же ассоциации встречаются амфиболы, везувиан, волластонит, пирит, хлорит, кальцит, гематит. Основная масса магнетита выделяется в конце скарнового процесса, нередко замещая гранит и пироксен с образованием вкрапленных и массивных руд. Магнетит поздних генераций нередко замещает пластинчатые агрегаты гематита — образуются псефдоморфозы магнетита по гематиту — мушкетовит.[10]
  3. Магнетит тесно ассоциирует с силикатами и алюмосиликатами — серпентином, актинолитом, эпидотом, флогопидом[11].
Читайте также:  Какое свойство алюминия позволяет изготовить из него фольгу

Как спутник магнетит встречается в гидротермальных месторождениях, главным образом в ассоциации с сульфидами (пирротином, пиритом, халькопиритом). Сравнительно редко он образует самостоятельные месторождения в ассоциации с сульфидами, апатитом и другими минералами[9].

При региональном метаморфизме осадочных железных руд возникали очень крупные пластовые и линзообразные залежи гематито-магнетитовых руд среди метаморфизованных древних осадочных толщ[12].

В экзогенных условиях образование магнетита может происходить лишь в исключительных случаях. Присутствие магнетитовых зёрнышек в современном морском иле, как полагают, является результатом не только сноса их с суши в виде обломочного материала, но также в виде новообразований на месте за счет гидроокислов железа под восстанавливающим влиянием разлагающихся органических веществ[9].

Месторождения[править | править код]

К числу магматических месторождений относится Кусинское месторождение (Челябинская обл.) титаномагнетита, содержащего также повышенное количество ванадия. Это месторождение представлено жилами сплошных руд, залегающими среди материнских изменённых изверженных пород габбровой формации. Магнетит тесно ассоциирует здесь с ильменитом и хлоритом. На Кольском полуострове крупное месторождения магнетита приурочено к массиву карбонатитов (Ковдор), где он добывается попутно с апатитом и бадделеитом (руда на цирконий). На Южном Урале разрабатывается Копанское месторождение титаномагнетита[13]. В рудах Садбери (Канада) магнетит обнаружен среди сульфидов и силикатов вмещающих пород. Адирондак в шт. Нью Йорк, Айрон-Маунтин в шт. Вайоминг, Бушвелд (ЮАР)[14].

Существуют месторождения пегматита с содержанием магнетита в Норвегии (Фредриксвен, Лангезундфиорд) и США (Довер в шт. Делавэр, Майнвил в шт. Нью-Йорк)[10].

Примером контактово-метасоматических месторождений является известная гора Магнитная (Южный Урал). Мощные магнетитовые залежи располагаются среди гранатовых, пироксено-гранатовых и гранат-эпидотовых скарнов, образовавшихся при воздействии гранитной магмы на известняки. В некоторых участках рудных залежей магнетит ассоциирует с первичным гематитом. Руды, залегающие ниже зоны окисления, содержат вкрапленные сульфиды (пирит, изредка халькопирит, галенит). К числу таких же месторождений относятся на Урале: гора Высокая (у Нижнего Тагила), гора Благодать (в Кушвинском районе), Коршуновское (в Забайкалье), группа месторождений в Кустанайской области Казахстана (Соколовское, Сарбайское, Куржункуль), а также Дашкесан (Азербайджан)[13].

Крупнейшее месторождение Кривой Рог (Украина) относится к числу регионально-метаморфизованных осадочных месторождений. В толще слоистых железистых кварцитов, кроме типичных пластовых залежей, сплошные железные руды представлены также столбообразными залежами с линзовидной формой в поперечном сечении, уходящими на значительную глубину. К числу аналогичных по генезису месторождений относится Курская магнитная аномалия (к юго-востоку от Курска). Глубоко метаморфизованные железистые кварциты известны также в месторождениях на Кольском полуострове (Оленегорское) и в Западной Карелии (Костомукша). Из иностранных отметим крупнейшие месторождения Кирунаваара и Люоссаваара в Швеции, залегающие в виде мощных жилообразных залежей в метаморфизованных толщах вулканитов; магнетит ассоциирует здесь с апатитом. Огромные месторождения магнетито-гематитовых руд США располагаются в районе Верхнего озера среди древнейших метаморфизованных сланцев, в Лабрадоре (Ньюфаундленд)[13].

Отличительные характеристики[править | править код]

От сходных по внешнему виду минералов (гематит, гаусманит, якобсит, браунит, шпинель) магнетит легко отличается по чёрной черте и сильной магнитности. Микроскопически в отраженном свете магнетит отличается от гематита изотропностью, низкой отражательной способностью, серовато-буроватым оттенком окраски и изометричностью зёрен. Ильменит, часто ассоциирующийся с магнетитом, анизотропен, имеет более низкую отражательную способность и не травится HCl. От якобсита и браунита магнетит отличается отсутствием внутренних рефлексов; кроме того, браунит анизотропен и обладает пониженной отражательной способностью[15].

Применение[править | править код]

  • Важная железная руда (72,4 % железа). Магнетитовые руды — главный тип железных руд, попутно извлекаются также Ti, V. Основной метод обогащения — мокрая магнитная сепарация в слабом поле. Комбинированные схемы обогащения (магнитно-гравитационные, обжигмагнитные, магнитофлотационные и др.) применяются для комплексных, в том числе титаномагнетитовых, а также бедных руд.
  • Изделия из плавленого магнетита используют в качестве электродов для некоторых[каких?]электрохимических процессов.
  • Частично используется в качестве утяжелителей глинистых растворов при бурении[15].

Разновидности[править | править код]

  1. Магномагнетит — с повышенным содержанием магния, промежуточный между магнетитом — FeFe2O4 и магнезиоферритом — MgFe2O4[16].
  2. Титаномагнетит — магнетит, содержащий мелкие включения титановых минералов; большей частью эти включения являются продуктами распада твёрдых растворов (FeTiO3 или Fe2TiO4), иногда продуктами замещения магнетита[17].
  3. Ванадомагнетит — содержит до 8 % V2O5. Найден в месторождениях Бихар (Индия) и Бушвелд (ЮАР).
  4. Хроммагнетит — Cr изоморфно замещает Fe3+. Обнаружен на Урале и в Трансваале.
  5. Алюмомагнетит — промежуточный между магнетитом и герцинитом[18].

См. также[править | править код]

  • Оксиды железа
  • Феррит
  • Вюстит
  • Маггемит (γ-Fe2O3)
  • Гематит (α-Fe2O3)

Примечания[править | править код]

  1. ↑ Железняк магнитный // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  2. 1 2 3 Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 58.
  3. ↑ Добровольский В. В. Минералогия, 2001, с. 71.
  4. 1 2 3 Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 60.
  5. ↑ Каденская. М. И. Минералогия, 1976, с. 196—197.
  6. Verwey E. J. W., Haayman P. W. Electronic Conductivity and Transition Point of Magnetite («Fe3O4») (нем.) // Physica. — 1941. — Bd. 8, H. 9. — S. 979—987. — doi:10.1016/S0031-8914(41)80005-6. — Bibcode: 1941Phy…..8..979V.
  7. ↑ Substance: Fe3O4. Property: electrical conductivity // Semiconductors / Eds.: O. Madelung et al. — Springer, 2000. — ISBN 978-3-540-64966-3.
  8. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 61.
  9. 1 2 3 4 5 Бетехтин А. Г. Курс минералогии, 2007, с. 319.
  10. 1 2 3 4 Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 66.
  11. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 67.
  12. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 67—68.
  13. 1 2 3 Бетехтин А. Г. Курс минералогии, 2007, с. 320.
  14. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 65.
  15. 1 2 Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 69.
  16. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 70.
  17. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 72.
  18. ↑ Чухров Ф. В., Бонштедт-Куплетская Э. М. Окислы и гидроокислы, 1967, с. 74.

Литература и источники[править | править код]

  1. Чухров Ф. В., Бонштедт-Куплетская Э. М. Минералы. Справочник. Выпуск 3. Сложные окислы, титанаты, ниобаты, танталаты, антимонаты, гидроокислы.. — Москва: Наука, 1967. — Т. 2. — 676 с.
  2. Каденская М. И. Руководство к практическим занятиям по минералогии и петрографии. — Москва: Просвещение, 1976. — 240 с.
  3. Добровольский В. В. Геология, минералогия, динамическая геология, петрография.. — Москва: Владос, 2001. — С. 320. — ISBN 5-691-00782-3.
  4. Бетехтин А. Г. Курс минералогии. — Москва: КДУ, 2007. — 721 с.

Ссылки[править | править код]

  • Магнетит в базе КаталогМинералов.Ru
  • Магнетит в базе mindat.org (англ.)
  • Магнетит в базе webmineral.com (англ.)
  • Криворожский железорудный бассейн
  • Дашкесанское магнетитовое месторождение
  • Магнетит // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Источник