Какой конечный продукт гликолиза

Анонимный вопрос  ·  15 января 2019

3,2 K

«Биомолекула» — научно-популярный сайт о молекулярных основах современной…  ·  biomolecula.ru

Гликолиз происходит в цитоплазме прокариотических или эукариотических клеток. Для последних известно, что ферменты гликолиза могут располагаться сближенно, образуя своего рода ферментативные комплексы, часто ассоциированные с внешней поверхностью разных клеточных мембран. Это обеспечивает быструю «передачу» продуктов от одного фермента к другому, снимая ограничения по скорости работы системы, связанные с диффузией.

Разрешите уточнить. Они «плавают» в цитозоле, или коецентрируются в каких-то органеллах? Спасибо.

Чем отличается симбиоз от синтеза?

Студентка медицинского. Люблю путешествовать, музыку, кино, вкусно поесть…

Это просто разные понятия. Если по простому, симбиоз — взаимовыгодное сосуществование (например, бактерий кишечника человека и организма в целом: бактерии вырабатывают витамин К, необходимый для образования в печени витамин-К зависимых факторов свёртывания, необходимых организму для нормальной работы плазменного звена гемостаза, т.е остановки кровотечения; организм же в свою очередь обеспечивает их питание). А синтез, если в химическом/физическом/биологическом смысле, — это процесс создания более сложных веществ из простых. (например, скушали вы белковый продукт, белки в ЖКТ расщепились до аминокислот, которые из кишечника всосались в кровь. Она доставила эти аминокислоты в клетки органов и тканей, где из них произошел синтез собственных белков организма).

Чем отличаются коллаген и гликоген по строению?

Популяризатор биологии, особенно биохимии и доказательной медицины. Область…  ·  vk.com/mir_mol

Коллаген – это белок, а гликоген – полисахарид.

Коллаген представляет собой фибриллярный, вытянутый, белок, каждая молекула представляет собой левозакрученную спираль из трёх переплетающихся полипептидных цепочек. В цепочках много гидроксилированных аминокислот, благодаря которым цепочки взаимодействуют между собой. Витамин C нужен, в первую очередь, для гидроксилирования аминокислот, недостаток витамина C ведёт к проблемам с соединительной тканью, в частности, к цинге. Каждая третья аминокислота в цепочках спирали – глицин, у которого боковая группа представлена лишь одним протоном. Глицин обеспечивает компактность структуры молекулы коллагена. В реальном коллагене тройные спирали располагаются строго определённым образом относительно друг друга, образуя структуры более высокого порядка – фибриллы, обладающие свойством механической прочности. В частности, это позволяет костям не ломаться и выполнять опорную функцию. Вообще говоря, коллаген – самый распространённый белок млекопитающих, он составляет порядка четверти всей нашей белковой массы. Известно около 30 классов коллагена, которые распределены по разным тканям.

Гликоген – это не белок, а полисахарид, а именно полимер глюкозы. Главная его функция – запасающая (глюкоза – источник энергии). В структуре молекулы гликогена можно увидеть, что линейные области цепочки иногда прерываются развилками. Это обеспечивается специальным ферментом, который действует на стадии образования этого полисахарида. Гликоген у нас есть в печени и мышцах. Правда, запасов печёночного гликогена хватает примерно на один день, эти резервы надо постоянно пополнять.

Сколько химических реакций происходит одновременно в одной клетке?

Врач-педиатр, Федеральная сеть клиник и диагностических центров «Эксперт» г…

В живой клетке каждую секунду протекают сотни и тысячи всевозможных хими­ческих реакций. И происходит это в  простых физиологических условиях.  Работа  клеток возможна, т.к.  они содержат уникальные катализаторы, которые могут значи­тельно ускорять химические реакци, называемые ферментами.  

Процветание различных форм жизни в значительной степени объясняется тем, что клетки способны образовы­вать большое количество ферментов. Под их чутким руководством   сложные многостадийные реакции могут происходить мгновенно.Поразительная особенность химических процессов клетки — стабильность. Если все реакции в клетке так тесно связаны между собой, то при малейшем сбое работа  должна быть парализована.  Клетке удаётся при­спосабливаться к внешним условиям, управляя деятельностью собствен­ных ферментов.

Комбинации различных механиз­мов регулирования деятельности ферментов могут вызывать сильные и длительные изменения химических реакций, протекающих в клетке. Изменяя ак­тивность определённых ферментов, клетка направляет химические реак­ции по нужному ей пути.

Например: глюко­за обычно используется в организме для получения энергии, которая вы­деляется при расщеплении молекул этого моносахарида. В некоторых условиях, например, после сильных физических нагрузок, умственного перенапряжения организму не­обходимо восстановить запасы глю­козы. В таких случаях происходит пе­реключение с расщепления глюкозы на её синтез. И основную роль здесь играют ферменты, отвечающие в клет­ке за превращения углеводов.

Прочитать ещё 1 ответ

Как диффузия в клетках помогает поддерживать гомеостаз?

Пишу, фотографирую, рисую

Диффузия — это взаимодействие, распространение, то есть проникание молекул одного вещества в другое.

Гемостаз — процесс, который обеспечивает жизнь клеток.

Чтобы клетки жили и росли, им нужны различные вещества — кислород, углекислый газ, пища, расщепленная до химического состояния.

Читайте также:  Какие продукты есть при дискинезии желчевыводящих путей

Так вот обеспечивает клетки этими необходимыми химическими веществами именно процесс диффузии. То есть диффузия в данном случае — процесс проникновения молекулы кислорода в молекулу тела человека, к примеру.

Так диффузия и поддерживает жизнь клеток. То есть — питает их.

Как протекает жизненный цикл аскариды?

Яйцо попадает в организм человека с водой или пищей -> в тонком кишечнике из яиц появляются личинки -> с током крови личинки мигрируют по организму, оказываются в желчных путях, печени, в полости пузыря, попадают в сердце и легкие -> из легких личинки выкашливаются вместе с мокротой, вновь заглатываются, происходит повторное заражение -> взрослая особь заселяет тонкий кишечник, питается полупереваренными остатками пищи -> яйца выходят вместе с калом.

Источник

Гликолиз – (от. греч. glycys — сладкий и lysis — растворение, распад) – бескислородный распад, в ходе которого синтезируются две молекулы АТФ на молекулу глюкозы. Конечными продуктами гликолиза являются пируват и NADH. Процесс гликолиза катализируется одиннадцатью ферментами.

Первой реакцией является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой и считается практически необратимой:

Второй реакций гликолиза является превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат. Реакция легко протекает в обоих направлениях, и для нее не требуется каких-либо кофакторов:

Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза.

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бифосфат расщепляется на две фосфотриозы. Реакция обратима.

Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бифосфогли­цериновой кислоты и восстановленной формы НАД (НАДН). Реакция протекает в несколько этапов:

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты (3-фосфоглицерат):

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосоглицериновая кислота превращается в 2-фосфо­глицериновую кислоту (2-фосфоглицерат). Реакция легко обратима, протекает в присутствии ионов Mg2+.

Девятая реакция катализируется ферментом енолазой, при этом фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Енолаза активируется двухвалентными катионами Mg2+ или Mn2+ и ингибируется фторидом.

Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование). Катализируется ферментом пируваткиназой:

Для действия пируватканизы необходимы ионы Mg2+, а также одновалентные катионы щелочных металлов (К+ или др.) Внутри клетки реакция является практически необратимой.

В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:

Последовательность реакций, протекающих при гликолизе, показана на рис. 26.

Рис. 26. Последовательность реакций гликолиза

1 — гексокиназа, 2 — фосфоглюкоизомераза, 3 — фосфофруктокиназа, 4 — альдолаза,
5 — триозофосфоизомераза, 6 — глицеральдегидфосфатдегидрогеназа,
7 — фосфоглицераткиназа, 8 — фосфоглицератмутаза, 9 — енолаза, 10 — пируваткиназа,
11 — лактатдегидрогеназа

Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфатных соединений. На первых стадиях гликолиза затрачиваются 2 молекулы АТФ (гексокиназная и фосфофруктокиназная реакции). На последующих образуется 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза составляет 2 молекулы АТФ на одну молекулу глюкозы.

Если гликолиз протекает в аэробных условиях, пируват и НАДН поступают в митохондрии, где пируват окисляется до СО2 и Н2О, а НАДН в НАД.

При анаэробном гликолизе происходит образование молочной кислоты из пирувата. Анаэробный гликолиз происходит в мышцах в первые минуты мышечной работы, в эритроцитах, в которых нет митохондрий, а также в различных органах и тканях при недостаточном снабжении их кислородом.

У многих микроорганизмов, растущих в анаэробных условиях, гликолиз является основным катаболитическим путем, предназначенным для извлечения пирувата из углеводных субстратов; дальнейшее превращение пирувата приводит к образованию определенных конечных продуктов метаболизма – продуктов брожения. Химическая природа этих продуктов зависит от вида микроорганизма и условий протекания процесса, в которых один и тот же микроорганизм осуществляет брожение.

Основными типами брожений являются спиртовое, молочнокислое, маслянокислое и др.

Источник

Читайте также:  Какие продукты вызываю пердешь

Универсальным источником энергии во всех клетках служит АТФ (аденозинтрифосфат, или аденозинтрифосфорная кислота).

Все энергетические затраты любой клетки обеспечиваются за счёт универсального энергетического вещества — АТФ.

АТФ синтезируется в результате реакции фосфорилирования, то есть присоединения одного остатка фосфорной кислоты к молекуле АДФ (аденозиндифосфата):

АДФ + H3PO4+ 40 кДж = АТФ + H2O.

Энергия запасается в форме энергии химических связей АТФ.  Химические связи АТФ, при разрыве которых выделяется много энергии, называются макроэргическими.

При распаде АТФ до АДФ клетка за счёт разрыва макроэргической связи получит приблизительно (40) кДж энергии.

Энергия для синтеза АТФ из АДФ  выделяется в процессе диссимиляции.

Энергетический обмен (диссимиляция, катаболизм) — это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ.

В зависимости от среды обитания организма, диссимиляция может проходить в два или в три этапа.

Процессы расщепления органических соединений у аэробных организмов происходят в три этапа: подготовительныйбескислородный и кислородный.

В результате этого органические вещества распадаются до простейших неорганических соединений.

 

У анаэробных организмов, обитающих в бескислородной среде и не нуждающихся в кислороде (а также у аэробных организмов при недостатке кислорода), диссимиляция происходит в два этапа: подготовительный и бескислородный.

В двухэтапном энергетическом обмене энергии запасается гораздо меньше, чем в трёхэтапном.

Первый этап — подготовительный

Подготовительный этап заключается в распаде крупных органических молекул до более простых: полисахаридов — до моносахаридов, липидов — до глицерина и жирных кислот, белков — до аминокислот.

Этот процесс называется пищеварением. У многоклеточных организмов он осуществляется в желудочно-кишечном тракте с помощью пищеварительных ферментов. У одноклеточных организмов — происходит под действием ферментов лизосом.

В ходе биохимических реакций, происходящих на этом этапе, энергии выделяется мало, она рассеивается в виде тепла, и АТФ  не образуется.

Второй этап — бескислородный (гликолиз)

Второй (бескислородный) этап заключается в ферментативном расщеплении органических веществ, которые были получены в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует.

Биологический смысл второго этапа заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде (2) молекул АТФ.

Процесс бескислородного расщепления глюкозы называется гликолиз.

Гликолиз происходит в цитоплазме клеток.

Он состоит из нескольких последовательных реакций превращения молекулы глюкозы C6H12O6 в две молекулы пировиноградной кислоты — ПВК C3H4O3 и две молекулы АТФ (в виде которой запасается примерно (40) % энергии, выделившейся при гликолизе). Остальная энергия (около (60) %) рассеивается в виде тепла.

C6H12O6 + H3PO4+ 2АДФ = C3H4O3+2АТФ +2H2O.

Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту C3H6O3.

HOOC−CO−CH3пировиноградная кислота→НАД⋅H+H+лактатдегидрогеназаHOOC−CHOH−CH3молочная кислота.

В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль. У нетренированных людей это происходит быстрее, чем у людей тренированных.

При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C2H5OH и углекислый газ CO2:

C6H12O6+2H3PO4+2АДФ=2C2H5OH+2CO2+2АТФ+2H2O.

Третий этап — кислородный

В результате гликолиза глюкоза распадается не до конечных продуктов (CO2 и H2O), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах. Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание.

Этот этап происходит на кристах митохондрий.

Третий этап, так же как и гликолиз, является многостадийным и состоит из двух последовательных процессов — цикла Кребса и окислительного фосфорилирования.

Третий (кислородный) этап заключается в том, что при кислородном дыхании ПВК окисляется до окончательных продуктов — углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде  (36) молекул АТФ  ((2) молекулы в цикле Кребса и (34) молекулы в ходе окислительного фосфорилирования).

Этот этап можно представить себе в следующем виде:

2C3H4O3+6O2+36H3PO4+36АДФ=6CO2+42H2O+36АТФ.

Вспомним, что ещё две молекулы АТФ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы (на втором, бескислородном, этапе). Таким образом, в результате полного расщепления одной молекулы глюкозы образуется (38) молекул АТФ.

Суммарная реакция энергетического обмена:

C6H12O6+6O2=6CO2+6H2O+38АТФ.

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Читайте также:  Какие продукты полезны какие нет и почему

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 апреля 2020;
проверки требуют 2 правки.

Гликогено́лиз — биохимический процесс расщепления гликогена до глюкозы, осуществляется главным образом в печени и мышцах[1]. Основная задача гликогенолиза — поддержание постоянного уровня глюкозы в крови[2]. Регуляция гликогенолиза осуществляется совместно с регуляцией гликогеногенеза по типу переключения одного на другое. Важнейшими гормонами, участвующими в регуляции гликогеногенеза, являются инсулин, глюкагон и адреналин[3].

Механизм и значение[править | править код]

Схема гликогенолизаЦепь гликоненов ,находящаяся в горизонтальном положении(жёлтые) соеденяются между углеродами С1 и С4 другой глюкозы, разветвление глюкозы (оранжевый) происходит в области углеводов С1-С6.

Гликоген, запасаемый в тканях животных, и крахмал, запасаемый растениями, могут быть мобилизованы клеткой для получения энергии при помощи гликогенолиза — фосфоролитической реакции, осуществляемой, прежде всего, ферментами гликогенфосфорилазой (или крахмалфосфорилазой[en] у растений). Эти ферменты катализируют атаку неорганическим фосфатом (α1→4) гликозидной связи, соединяющей два крайних остатка глюкозы на неветвящемся конце, в результате чего образуется глюкозо-1-фосфат и глюкозный полимер, содержащий на 1 глюкозный остаток меньше исходного (к расщеплению (α1→6)-гликозидных связей они неспособны). Часть энергии гликозидной связи при этом запасается эфирной связи, соединяющей фосфат с глюкозой в глюкозо-1-фосфате. Гликогенфосфорилаза (или крахмалфосфорилаза) продолжает отщеплять по одному глюкозному остатку до тех пор, пока она не дойдёт до последних четырёх глюкозных остатков на пути к точке ветвления полисахарида (т. е. гликозидной связи (α1→6)), где она останавливается. Далее в работу вступает олигосахарилтрансфераза[en], которая переносит три глюкозных остатка, ближних к концу неветвящегося участка, на нередуцирующий конец цепи и таким образом удлиняет её. Оставшийся глюкозный остаток, соединённый с основной неветвящейся цепью (α1→6)-гликозидной связью, отщепляется (α1→6)-гликозидазой в виде свободной глюкозы[4].

Образовавшийся при отщеплении глюкозных остатков глюкозо-1-фосфат переводится в глюкозо-6-фосфат ферментом фосфоглюкомутазой, катализирующим обратимую реакцию:

Глюкозо-1-фосфат ⇌ глюкозо-6-фосфат.

Механизм действия этого фермента такой же, как у фосфоглицератмутазы[5]. Образующийся в ходе этой реакции глюкозо-6-фосфат в печени под действием глюкозо-6-фосфатазы распадается на фосфат и глюкозу, которая поступает в кровь. Так обеспечивается главная функция гликогена печени — поддержание постоянного уровня глюкозы (3,3—3,5 ммоль) в крови в интервалах между приёмами пищи для использования её другими органами, прежде всего мозгом. По прошествии 10—18 часов после приёма пищи запасы гликогена в печени значительно истощаются, а голодание в течение 24 часов приводит к полному их исчерпанию. В мышцах глюкозо-6-фосфатаза отсутствует, а для фосфорилированной глюкозы клеточная мембрана непроницаема, поэтому она используется только в мышечных клетках и гликоген мышц обеспечивает энергией только сами мышцы. В мышцах глюкозо-6-фосфат вовлекается в катаболизм (гликолиз или пентозофосфатный путь[5]) или превращается в лактат[2].

Описанная выше ситуация характерна лишь для гликогена и крахмала, запасённых внутри клетки. Фосфоролиз[en] в пищеварительном тракте гликогена и крахмала, поступающих в организм с пищей, не имеет никаких преимуществ перед обычным гидролизом: так как клеточные мембраны непроницаемы для фосфатов сахаров, образующийся при фосфоролизе глюкозо-6-фосфат необходимо сначала превратить в обычный сахар[5]. При гидролизе, осуществляемым, например, пищеварительным ферментом α-амилазой, частицей, атакующей гликозидную связь, является вода, а не неорганический фосфат[6].

Регуляция[править | править код]

Регуляция гликогенолиза осуществляется совместно с гликогеногенезом (образованием гликогена) по типу переключения. Это переключение происходит при переходе из абсорбтивного состояния в постабсортивное, а также при смене состояния покоя на режим физической работы. В печени оно осуществляется при участии гормонов инсулина, глюкагона и адреналина, а в мышцах — инсулина и адреналина. Их действие на синтез и распад гликогена опосредовано изменением в противоположном направлении активности двух ключевых ферментов: гликогенсинтазы[en] (гликогеногенез) и гликогенфосфорилазы (гликогенолиз) при помощи их фосфорилирования/дефосфорилирования[3].

Примечания[править | править код]

  1. Гликогенолиз — статья из Толкового словаря по медицине
  2. 1 2 Северин, 2011, с. 243.
  3. 1 2 Северин, 2011, с. 245.
  4. ↑ Северин, 2011, с. 244.
  5. 1 2 3 Nelson, Cox, 2008, p. 544.
  6. ↑ Nelson, Cox, 2008, p. 543.

Литература[править | править код]

  • David L. Nelson, Michael M. Cox. Lehninger Principles of biochemistry. — Fifth edition. — New York: W. H. Freeman and company, 2008. — 1158 p. — ISBN 978-0-7167-7108-1.
  • Биологическая химия с упражнениями и задачами / Под ред. С. Е. Северина. — М.: Издательская группа «ГЭОТАР-Медиа», 2011. — 624 с.

Источник