Какой из гидроксидов серы проявляет самые сильные кислотные свойства

Какой из гидроксидов серы проявляет самые сильные кислотные свойства thumbnail

Кислотные гидроксиды – это неорганические соединения гидроксильной группы –ОН и металла или неметалла со степенью окисления +5, +6. Другое название – кислородсодержащие неорганические кислоты. Их особенностью является отщепление протона при диссоциации.

Классификация гидроксидов

Гидроксиды также имеют название гидроокисей и водокисей. Они есть практически у всех химических элементов, некоторые имеют широкое распространение в природе, например, минералы гидраргиллит и брусит – это гидроокиси алюминия и магния соответственно.

Выделяют следующие виды гидроксидов:

  • основные;
  • амфотерные;
  • кислотные.

Классификация основывается на принадлежности оксида, образующего гидроокись, к основному, кислотному или амфотерному типу.

Общие свойства

Наибольший интерес вызывают кислотно-основные свойства оксидов и гидроксидов, так как от них зависит возможность протекания реакций. Будет ли гидроокись проявлять кислотные, основные или амфотерные свойства, зависит от прочности связи между кислородом, водородом и элементом.

На прочность влияют ионный потенциал, с увеличением которого ослабевают основные и усиливаются кислотные свойства гидроксидов.

Высшие гидроксиды

Высшими гидроокисями называют соединения, в которых образующий элемент находится в высшей степени окисления. Такие есть среди всех типов в классе. Пример основания – гидроксид магния. Гидроксид алюминия относится к амфотерным, а хлорная кислота может классифицироваться как кислотный гидроксид.

Изменение характеристик этих веществ в зависимости от образующего элемента можно проследить по периодической системе Д. И. Менделеева. Кислотные свойства высших гидроксидов усиливаются слева направо, а металлические, соответственно, ослабевают в этом направлении.

Основные гидроксиды

В узком смысле этот тип называется основанием, так как при его диссоциации отщепляется анион ОН. Самые известные из таких соединений – щелочи, например:

  • Гашеная известь Са(ОН)2, используемая при побелке помещений, дублении кож, для приготовления противогрибковых жидкостей, строительных растворов и бетона, умягчения воды, производства сахара, хлорной извести и удобрений, каустификации карбонатов натрия и калия, нейтрализации кислых растворов, обнаружения углекислого газа, дезинфекции, снижения удельного сопротивления грунта, в качестве пищевой добавки.
  • Каустический поташ КОН, применяемый в фотографии, нефтепереработке, пищевом, бумажном и металлургическом производстве, а также как щелочной элемент питания, нейтрализатор кислот, катализатор, газоочиститель, регулятор водородного показателя, электролит, компонент моющих средств, буровых растворов, красителей, удобрений, калийных органических и неорганических веществ, пестицидов, фармацевтических препаратов для лечения бородавок, мыла, синтетического каучука.
  • Едкий натр NaOH, необходимый для целлюлозно-бумажной промышленности, омыления жиров при производстве моющих средств, нейтрализации кислот, изготовления биодизельного топлива, растворения засоров, дегазации отравляющих веществ, обработки хлопка и шерсти, мойки пресс-форм, пищевого производства, косметологии, фотографии.

Основные гидроксиды образуются как результат взаимодействия с водой соответствующих оксидов металлов, в подавляющем большинстве случаев со степенью окисления +1 или +2. К таким относятся щелочные, щелочноземельные и переходные элементы.

Кроме того, основания можно получить следующими способами:

  • взаимодействием щелочи с солью малоактивного металла;
  • реакцией между щелочным либо щелочноземельным элементом и водой;
  • электролизом водного раствора соли.

Кислотные и основные гидроксиды взаимодействуют между собой с образованием соли и воды. Такая реакция называется нейтрализацией и имеет большое значение для титриметрического анализа. Кроме того, она используется в быту. При проливе кислоты нейтрализовать опасный реагент можно содой, а для щелочи используют уксус.

Кроме того, основные гидроокиси смещают ионное равновесие при диссоциации в растворе, что проявляется в изменении цветов индикаторов, и вступают в обменные реакции.

Щелочь придает фенолфталеину малиновый цвет

При нагревании нерастворимые соединения разлагаются на оксид и воду, а щелочи плавятся. Основный гидроксид и кислотный оксид образуют соль.

Амфотерные гидроксиды

Некоторые элементы в зависимости от условий проявляют то основные, то кислотные свойства. Гидроксиды на их основе называются амфотерными. Их легко определить по входящему в состав металлу, имеющему степень окисления +3, +4. Например, белое студенистое вещество – гидроксид алюминия Al(ОН)3, используемый при очистке воды благодаря его высокой адсорбирующей способности, изготовлении вакцин в качестве вещества, усиливающего иммунный ответ, в медицине для лечения кислотозависимых заболеваний желудочно-кишечного тракта. Также он часто включается в состав пластиков для подавления горения и выступает в качестве носителя для катализаторов.

Амфотерный гидроксид алюминия

Но есть и исключения, когда значение степени окисления элемента +2. Это характерно для бериллия, олова, свинца и цинка. Гидроксид последнего металла Zn(ОН)2 находит широкое применение в химических отраслях, в первую очередь, для синтеза различных соединений.

Получить амфотерную гидроокись можно, проведя реакцию между раствором соли переходного металла и разбавленной щелочью.

Амфотерный гидроксид и кислотный оксид, щелочь или кислота образуют соль при взаимодействии. Нагревание гидроокиси приводит к ее разложению на воду и метагидроксид, который при дальнейшем нагревании преобразуется в оксид.

Амфотерные и кислотные гидроксиды одинаково ведут себя в щелочной среде. При взаимодействии с кислотами амфотерные гидроокиси выступают в роли оснований.

Кислотные гидроксиды

Этот тип характеризуется наличием в составе элемента в степени окисления от +4 до +7. В растворе они способны отдавать катион водорода или принимать электронную пару и образовывать ковалентную связь. Чаще всего они имеют агрегатное состояние жидкости, но есть среди них и твердые вещества.

Образует гидроксид кислотный оксид, способный к солеобразованию и содержащий в составе неметалл или переходный металл. Оксид получается в результате окисления неметалла, разложения кислоты или соли.

Кислотные свойства гидроксидов проявляются в их способности окрашивать индикаторы, растворять активные металлы с выделением водорода, реагировать с основаниями и основными оксидами. Их отличительной особенностью является участие в окислительно-восстановительных реакциях. Во время химического процесса они присоединяют к себе отрицательно заряженные элементарные частицы. Способность выступать в качестве акцептора электронов ослабевает при разбавлении и превращении в соли.

Таким образом, можно выделить не только кислотно-основные свойства гидроксидов, но и окислительные.

Азотная кислота

HNO3 считается сильной одноосновной кислотой. Она очень ядовита, оставляет язвы на коже с желтым окрашиванием покровов, а ее пары моментально раздражают слизистую дыхательных путей. Устаревшее название – крепкая водка. Она относится к кислотным гидроксидам, в водных растворах полностью диссоциирует на ионы. Внешне выглядит как бесцветная, дымящаяся на воздухе жидкость. Концентрированным считается водный раствор, в который входит 60 — 70 % вещества, а если содержание превышает 95 %, его называют дымящейся азотной кислотой.

Чем выше концентрация, тем более темной выглядит жидкость. Она может иметь даже бурую окраску из-за разложения на оксид, кислород и воду на свету или при небольшом нагревании, поэтому хранить ее следует в емкости из темного стекла в прохладном месте.

Химические свойства кислотного гидроксида таковы, что перегонять без разложения его можно лишь при пониженном давлении. С ним реагируют все металлы кроме золота, некоторых представителей платиновой группы и тантала, но конечный продукт зависит от концентрации кислоты.

Например, 60%-е вещество при взаимодействии с цинком дает диоксид азота в качестве преобладающего побочного продукта, 30%-е – монооксид, 20%-е – оксид диазота (веселящий газ). Еще меньшие концентрации в 10% и 3% дают простое вещество азот в виде газа и аммонийную селитру соответственно. Таким образом, на основе кислоты можно получать различные нитросоединения. Как видно из примера, чем меньше концентрация, тем глубже восстановление азота. Также на это влияет активность металла.

Читайте также:  Каким свойством обладает точка координатной плоскости

Взаимодействие азотной кислоты с цинком

Растворить золото или платину вещество может только в составе царской водки – смеси из трех частей соляной и одной азотной кислот. Стекло и политетрафторэтилен к нему устойчивы.

Помимо металлов вещество вступает в реакцию с основными и амфотерными оксидами, основаниями, слабыми кислотами. Во всех случаях в результате получаются соли, с неметаллами – кислоты. Не все реакции происходят безопасно, так, амины и скипидар самовоспламеняются при контакте с гидроксидом в концентрированном состоянии.

Соли называются нитратами. При нагревании они разлагаются или проявляют окислительные свойства. На практике используются как удобрения. В природе практически не встречаются из-за высокой растворимости, поэтому все соли кроме калийных и натриевых получают искусственно.

Саму кислоту получают из синтезированного аммиака и в случае необходимости концентрируют несколькими способами:

  • смещением равновесия путем повышения давления;
  • нагреванием в присутствии серной кислоты;
  • дистилляцией.

Далее ее используют в производстве минеральных удобрений, красителей и лекарств, военной промышленности, станковой графике, ювелирном деле, органическом синтезе. Изредка разбавленную кислоту применяют в фотографии для подкисления тонирующих растворов.

Серная кислота

Н2SO4 – сильная двухосновная кислота. Выглядит как бесцветная тяжелая маслянистая жидкость, не обладает запахом. Устаревшее название – купорос (водный раствор) или купоросное масло (смесь с сернистым ангидридом). Такое наименование было присвоено из-за того, что в начале XIX века серу производили на купоросных заводах. В дань традиции кристаллогидраты сульфатов по сей день называют купоросом.

Производство кислоты налажено в промышленных масштабах и составляет около 200 миллионов тонн в год. Ее получают окислением сернистого газа кислородом или диоксидом азота в присутствии воды либо взаимодействием сероводорода с сульфатом меди, серебра, свинца или ртути. Получающееся в итоге концентрированное вещество является сильным окислителем: вытесняет галогены из соответствующих кислот, преобразует углерод и серу в кислотные оксиды. Гидроксид при этом восстанавливается до сернистого газа, сероводорода или серы. Разбавленная кислота обычно не проявляет окислительных свойств и образует средние и кислые соли или эфиры.

Обнаружить и идентифицировать вещество можно по реакции с растворимыми солями бария, в результате которой выпадает белый осадок сульфата.

Качественная реакция на серную кислоту

В дальнейшем кислота используется в обработке руд, производстве минеральных удобрений, химических волокон, красителей, дымообразующих и взрывчатых веществ, различных отраслях промышленности, органическом синтезе, в качестве электролита, для получения минеральных солей.

Но применение сопряжено с определенными опасностями. Едкое вещество вызывает химические ожоги при соприкосновении с кожей или слизистыми оболочками. При вдыхании сначала появляется кашель, а впоследствии — воспалительные заболевания гортани, трахеи, бронхов. Превышение предельно допустимой концентрации в 1 мг на кубический метр смертельно опасно.

Столкнуться с сернокислотными парами можно не только на специализированных производствах, но и в атмосфере города. Такое случается, когда химические и металлургические предприятия осуществляют выбросы оксидов серы, которые затем выпадают в виде кислотных дождей.

Все эти опасности привели к тому, что оборот серной кислоты, содержащей более 45% массовой концентрации, в России ограничен.

Сернистая кислота

Н2SO3 — более слабая кислота по сравнению с серной. Ее формула отличается всего на один атом кислорода, но это делает ее неустойчивой. В свободном состоянии она не выделена, существует только в разбавленных водных растворах. Идентифицировать их можно по специфическому резкому запаху, напоминающему прогоревшую спичку. А подтвердить наличие сульфит-иона — по реакции с перманганатом калия, в результате которой красно-фиолетовый раствор обесцвечивается.

Вещество в разных условиях может выступать в роли восстановителя и окислителя, образовывать кислые и средние соли. Применяется оно для пищевого консервирования, получения целлюлозы из древесины, а также для деликатного отбеливания шерсти, шелка и других материалов.

Сернистая кислота для производства целлюлозы

Ортофосфорная кислота

Н3РО4 – кислота средней силы, которая выглядит как бесцветные кристаллы. Также ортофосфорной кислотой называют 85%-ный раствор этих кристаллов в воде. Он выглядит как сиропообразная жидкость без запаха, склонная к переохлаждению. Нагревание выше 210 градусов Цельсия приводит к ее превращению в пирофосфорную кислоту.

Ортофосфорная кислота хорошо растворяется в воде, нейтрализуется щелочами и гидратом аммиака, реагирует с металлами, образует полимерные соединения.

Получить вещество можно разными способами:

  • растворением красного фосфора в воде под давлением, при температуре 700-900 градусов, с использованием платины, меди, титана или циркония;
  • кипячением красного фосфора в концентрированной азотной кислоте;
  • добавлением горячей концентрированной азотной кислоты к фосфину;
  • окислением фосфина кислорода при 150 градусах;
  • воздействием на декаоскид тетрафосфора температурой в 0 градусов, затем ее постепенным повышением до 20 градусов и плавным переходом к кипячению (на всех этапах нужна вода);
  • растворением пентахлорида или оксид-трихлорида фосфора в воде.

Применение у получаемого продукта широкое. С его помощью снижают поверхностное натяжение и удаляют оксиды с поверхностей, готовящихся к пайке, очищают металлы от ржавчины и создают на их поверхности защитную пленку, препятствующую дальнейшей коррозии. Кроме того, ортофосфорную кислоту используют в промышленных морозильных установках и для исследований в молекулярной биологии.

Ортофосфорная кислота очищает от ржавчины

Также соединение входит в состав авиационных гидрожидкостей, пищевых добавок и регуляторов кислотности. Применяется в звероводстве для профилактики мочекаменной болезни у норок и в стоматологии для манипуляций, предшествующих пломбированию.

Пирофосфорная кислота

Н4Р2О7 – кислота, характеризующаяся как сильная по первой ступени и слабая по остальным. Плавится она без разложения, так как для этого процесса нужно нагревание в вакууме или присутствие сильных кислот. Нейтрализуется щелочами и реагирует с перекисью водорода. Получают ее одним из следующих способов:

  • разложением декаоксида тетрафосфора в воде при нулевой температуре, а затем его нагреванием до 20 градусов;
  • нагреванием ортофосфорной кислоты до 150 градусов;
  • взаимодействием концентрированной фосфорной кислоты с декаоксидом тетрафосфора при 80-100 градусах.

Применяется продукт в основном для производства удобрений.

Пирофосфорная кислота для производства удобрений

Помимо этих, есть множество других представителей кислотных гидроокисей. Каждая из них имеет свои особенности и характеристики, но в общем кислотные свойства оксидов и гидроксидов заключаются в их способности отщеплять водород, разлагаться, взаимодействовать с щелочами, солями и металлами.

Источник

Серная кислота

Систематическое
наименование
серная кислота
Хим. формула H2SO4
Состояние жидкость
Молярная масса 98,078 ± 0,006 г/моль
Плотность 1,8356 г/см³
Динамическая вязкость 21 мПа·с[1]
Температура
 • плавления 10,38 °C
 • кипения 337 °C
Удельная теплота плавления 10,73 Дж/кг
Давление пара 0,001 ± 0,001 мм рт.ст.[2]
Константа диссоциации кислоты -3
Растворимость
 • в воде смешивается
Показатель преломления 1.397
Дипольный момент 2.72 Д
Рег. номер CAS 7664-93-9
PubChem 1118
Рег. номер EINECS 231-639-5
SMILES

OS(O)(=O)=O

InChI

1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)

QAOWNCQODCNURD-UHFFFAOYSA-N

Кодекс Алиментариус E513
RTECS WS5600000
ChEBI 26836
Номер ООН 1830
ChemSpider 1086
ЛД50 510 мг/кг
Пиктограммы СГС
NFPA 704

3

2

W
OX

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Се́рная кислота́ H2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха, с сильнокислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3 : H2O < 1, то это водный раствор серной кислоты, если > 1 — раствор SO3 в серной кислоте (олеум).

Название[править | править код]

В XVIII—XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом»[3][4], очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) — купоросы.

Получение серной кислоты[править | править код]

Промышленный (контактный) способ[править | править код]

В промышленности серную кислоту получают окислением диоксида серы (сернистый газ, образующийся в процессе сжигания серы или серного колчедана) до триоксида (серного ангидрида) с последующим взаимодействием SO3 с водой. Получаемую данным способом серную кислоту также называют контактной (концентрация 92-94 %).

Нитрозный (башенный) способ[править | править код]

Раньше серную кислоту получали исключительно нитрозным методом в специальных башнях, а кислоту называли башенной (концентрация 75 %). Сущность этого метода заключается в окислении диоксида серы диоксидом азота в присутствии воды. Именно таким способом произошла реакция в воздухе Лондона во время Великого смога.

Физические и физико-химические свойства[править | править код]

Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (К₂ 1,2 10−2); длины связей в молекуле S=O 0,143 нм, S—OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС). Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4− — 0,18, H3SO4+ — 0,14, H3O+ — 0,09, H2S2O7, — 0,04, HS2O7⁻ — 0,05. Смешивается с водой и SO3, во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на H3О+, HSO3+, и 2НSO₄−. Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.

Олеум[править | править код]

Основная статья: Олеум

Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3.

Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

Сульфит

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H2SO4.

Свойства водных растворов серной кислоты и олеума

Содержание % по массеПлотность при 20 ℃, г/см³Температура плавления, ℃Температура кипения, ℃
H2SO4SO3 (свободный)
101,0661−5,5102,0
201,1394−19,0104,4
401,3028−65,2113,9
601,4983−25,8141,8
801,7272−3,0210,2
981,83650,1332,4
1001,830510,4296,2
104,5201,8968−11,0166,6
109401,961133,3100,6
113,5602,00127,169,8
118,0801,994716,955,0
122,51001,920316,844,7

Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация:

Уравнение температурной зависимости константы равновесия:

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

где С — концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO3 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4[источник не указан 3163 дня]. Для олеума минимальное ρ при концентрации 10 % SO3. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.

Химические свойства[править | править код]

Серная кислота в концентрированном виде при нагревании — довольно сильный окислитель.

Окисляет HI и частично HBr до свободных галогенов.

Углерод до CO2, серу — до SO2.

Окисляет многие металлы (исключения: Au, Pt, Ir, Rh, Ta.). При этом концентрированная серная кислота восстанавливается до SO2, например[5]:

На холоде в концентрированной серной кислоте Fe, Al, Cr, Co, Ni, Ba пассивируются и реакции не протекают.

Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H2S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ[5].

Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением, например[5]:

Окислительные свойства для разбавленной H2SO4 нехарактерны. Серная кислота образует два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.

Серная кислота реагирует также с основными оксидами, образуя сульфат и воду:

На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты:

Концентрированная H2SO4 превращает некоторые органические вещества в другие соединения углерода:

Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например[6]:

Применение[править | править код]

Серную кислоту применяют:

  • в обработке руд, особенно при добыче редких элементов, в том числе урана, иридия, циркония, осмия и т. п.;
  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности — зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.;
    • для восстановления смол в фильтрах на производстве дистиллированной воды.

Мировое производство серной кислоты около 200 млн тонн в год[7]. Самый крупный потребитель серной кислоты — производство минеральных удобрений. На P₂O₅ фосфорных удобрений расходуется в 2,2—3,4 раза больше по массе серной кислоты, а на (NH₄)₂SO₄ серной кислоты 75 % от массы расходуемого (NH₄)₂SO₄. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Токсическое действие[править | править код]

Серная кислота и олеум — очень едкие вещества. Они поражают все ткани организма. При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко — ларингит, трахеит, бронхит и т. д. Попадание кислоты на глаза может привести как к конъюнктивиту, так и к полной потере зрения.[8] Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

В РФ оборот серной кислоты концентрации 45 % и более — ограничен[9].

Исторические сведения[править | править код]

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4•7H2O и CuSO4•5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Схема получения серной кислоты из железного купороса — термическое разложение сульфата железа (II) с последующим охлаждением смеси[10]

В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путём поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. В СССР такой способ просуществовал вплоть до 1955 г.

Алхимикам XV века в известен был также способ получения серной кислоты из пирита — серного колчедана, более дешёвого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах.
Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. В настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.

В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. В 1913 году Россия по производству серной кислоты занимала 13 место в мире.[11]

Дополнительные сведения[править | править код]

Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты. Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата. Например, в результате извержения вулкана Ксудач (Полуостров Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже[12]. Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3⋅107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994[13].

Стандарты[править | править код]

  • Кислота серная техническая ГОСТ 2184—77
  • Кислота серная аккумуляторная. Технические условия ГОСТ 667—73
  • Кислота серная особой чистоты. Технические условия ГОСТ 14262—78
  • Реактивы. Кислота серная. Технические условия ГОСТ 4204—77

Примечания[править | править код]

  1. ↑ Kirk-Othmer Encyclopedia of Chemical Technology — ISBN 0-471-23896-1
  2. ↑ https://www.cdc.gov/niosh/npg/npgd0577.html
  3. Ушакова Н. Н., Фигурновский Н. А. Василий Михайлович Севергин: (1765—1826) / Ред. И. И. Шафрановский. М.: Наука, 1981. C. 59.
  4. ↑ См. также Каменное масло
  5. 1 2 3 Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 91. Химические свойства серной кислоты // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 209—211. — 240 с. — 1 630 000 экз.
  6. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 92. Качественная реакция на серную кислоту и её соли // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 212. — 240 с. — 1 630 000 экз.
  7. ↑ Sulfuric acid (англ.) // «The Essential Chemical Industry — online»
  8. ↑ SULFURIC ACID | CAMEO Chemicals | NOAA. cameochemicals.noaa.gov. Дата обращения 22 мая 2020.
  9. ↑ Постановление Правительства Российской Федерации от 3 июня 2010 года № 398 (недоступная ссылка). Дата обращения 30 мая 2016. Архивировано 30 июня 2016 года.
  10. ↑ Эпштейн, 1979, с. 40.
  11. ↑ Эпштейн, 1979, с. 41.
  12. ↑ см. статью «Вулканы и климат» Архивная копия от 28 сентября 2007 на Wayback Machine (рус.)
  13. ↑ Русский архипелаг — Виновато ли человечество в глобальном изменении климата? Архивная копия от 1 декабря 2007 на Wayback Machine (рус.)

Литература[править | править код]

  • Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971
  • Эпштейн Д. А. Общая химическая технология. — М.: Химия, 1979. — 312 с.

Ссылки[править | править код]

  • Статья «Серная кислота» (Химическая энциклопедия)
  • Плотность и значение pH серной кислоты при t=20 °C

Источник

Читайте также:  Какая существует связь между структурой воды и ее свойствами