Какой четырехугольник называется ромбом сформулируйте свойства ромба

Какой четырехугольник называется ромбом сформулируйте свойства ромба thumbnail

У этого термина существуют и другие значения, см. Ромб (значения).

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология[править | править код]

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства[править | править код]

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны: АВ || CD, AD || ВС. Противоположные углы ромба равны, а соседние углы дополняют друг друга до 180°.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки[править | править код]

Параллелограмм является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, ).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба[править | править код]

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4].

Уравнение ромба[править | править код]

Уравнение ромба с центром в точке и диагоналями, параллельными осям координат, может быть записано в виде:

где — половины длин диагоналей ромба по осям соответственно.

Длина стороны ромба равна Площадь ромба равна Левый угол ромба рассчитывается по формуле:

Второй угол дополняет его до 180°.

В случае a = b уравнение отображает повёрнутый на 45° квадрат:

где сторона квадрата равна а его диагональ равна Соответственно площадь квадрата равна

Из уравнения видно, что ромб можно рассматривать как суперэллипс степени 1.

Площадь ромба[править | править код]

  • Площадь ромба равна половине произведения его диагоналей.
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
  • Кроме того, площадь ромба может быть вычислена по формуле:

,

где  — угол между двумя смежными сторонами ромба.

  • Также площадь ромба можно рассчитать по формуле, где присутствует радиус вписанной окружности и угол :

Радиус вписанной окружности[править | править код]

Радиус вписанной окружности r может быть выражен через диагонали p и q в виде:[5]

В геральдике[править | править код]

Ромб является простой геральдической фигурой.

  • Червлёный ромб в серебряном поле

  • В червлёном поле 3 сквозных ромба: 2 и 1

  • Просверленный червлёный ромб в серебряном поле

  • В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов

Симметрия[править | править код]

Ромб симметричен относительно любой из своих диагоналей, поэтому часто используется в орнаментах и паркетах.

  • Ромбический орнамент

  • Ромбические звёзды

  • Более сложный орнамент

См. другие примеры на Викискладе.

См. также[править | править код]

  • Дельтоид
  • Звезда (геометрия)
  • Ромбододекаэдр

Примечания[править | править код]

Литература[править | править код]

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Источник

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Четырехугольники
  5. Ромб и квадрат

Частным видом параллелограмма является ромб.

Ромбом называется параллелограмм, у которого все стороны равны

Какой четырехугольник называется ромбом сформулируйте свойства ромба

ABCD — ромб.

Ромб обладает всеми свойствами параллелограмма.

Особое свойство ромба

Доказательство

Дано: ABCD — ромб

Доказать: ACКакой четырехугольник называется ромбом сформулируйте свойства ромбаBD, Какой четырехугольник называется ромбом сформулируйте свойства ромбаADO = Какой четырехугольник называется ромбом сформулируйте свойства ромбаCDO

Доказательство:

Какой четырехугольник называется ромбом сформулируйте свойства ромба

AD = DC (по определению ромба), значит, Какой четырехугольник называется ромбом сформулируйте свойства ромбаADC — равнобедренный.

AO = OC (по свойству диагоналей параллелограмма), Какой четырехугольник называется ромбом сформулируйте свойства ромбаDO — медиана Какой четырехугольник называется ромбом сформулируйте свойства ромбаADC , а в равнобедренном треугольнике медиана, проведённая к основанию, является высотой и биссектрисойКакой четырехугольник называется ромбом сформулируйте свойства ромбаACКакой четырехугольник называется ромбом сформулируйте свойства ромбаBD, Какой четырехугольник называется ромбом сформулируйте свойства ромбаADO = Какой четырехугольник называется ромбом сформулируйте свойства ромбаCDO, что и требовалось доказать.

Теорема

Доказательство

Дано: ABCD — параллелограмм, ACКакой четырехугольник называется ромбом сформулируйте свойства ромбаBD

Доказать: ABCD — ромб

Доказательство:

Какой четырехугольник называется ромбом сформулируйте свойства ромба

Рассмотрим Какой четырехугольник называется ромбом сформулируйте свойства ромбаAOВ и Какой четырехугольник называется ромбом сформулируйте свойства ромбаCOВ:

Т.к. ACКакой четырехугольник называется ромбом сформулируйте свойства ромбаBD, тоКакой четырехугольник называется ромбом сформулируйте свойства ромбаAOВ = Какой четырехугольник называется ромбом сформулируйте свойства ромбаCOВ = 900;

AO = OC (по свойству диагоналей параллелограмма), ОВ — общий катет, Какой четырехугольник называется ромбом сформулируйте свойства ромбаКакой четырехугольник называется ромбом сформулируйте свойства ромбаAOВ = Какой четырехугольник называется ромбом сформулируйте свойства ромбаCOВ (по двум катетам). В равных треугольниках против соответственно равных углов лежат равные стороны, Какой четырехугольник называется ромбом сформулируйте свойства ромбаВС = ВА.

В параллелограмме противоположные стороны равны, Какой четырехугольник называется ромбом сформулируйте свойства ромбаAD = BC, AB = DC

Итак: ABCD — параллелограмм (по условию) AD = BC =AB = DC (по доказанному). Какой четырехугольник называется ромбом сформулируйте свойства ромбаABCD — ромб, что и требовалось доказать.

Теорема

Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб

Доказательство

Читайте также:  На какие типы подразделяются системы по изменчивости свойств

Дано: ABCD — параллелограмм, АС — диагональ и биссектриса Какой четырехугольник называется ромбом сформулируйте свойства ромбаDAB иКакой четырехугольник называется ромбом сформулируйте свойства ромбаDCB

Доказать: ABCD — ромб

Доказательство:

Какой четырехугольник называется ромбом сформулируйте свойства ромба

Какой четырехугольник называется ромбом сформулируйте свойства ромбаDAB =Какой четырехугольник называется ромбом сформулируйте свойства ромбаDCB (по свойству параллелограмма), а АС -биссектриса Какой четырехугольник называется ромбом сформулируйте свойства ромбаDAB иКакой четырехугольник называется ромбом сформулируйте свойства ромбаDCB (т.е. АС делит эти углы на два равных угла), Какой четырехугольник называется ромбом сформулируйте свойства ромбаКакой четырехугольник называется ромбом сформулируйте свойства ромбаDAC = Какой четырехугольник называется ромбом сформулируйте свойства ромбаBAC =Какой четырехугольник называется ромбом сформулируйте свойства ромбаDCA = Какой четырехугольник называется ромбом сформулируйте свойства ромбаBCA

Рассмотрим Какой четырехугольник называется ромбом сформулируйте свойства ромбаADCКакой четырехугольник называется ромбом сформулируйте свойства ромбаDAC =Какой четырехугольник называется ромбом сформулируйте свойства ромбаDCAКакой четырехугольник называется ромбом сформулируйте свойства ромбаКакой четырехугольник называется ромбом сформулируйте свойства ромбаADC — равнобедренный с основанием AC, и AD = DC. В параллелограмме противоположные стороны равны, Какой четырехугольник называется ромбом сформулируйте свойства ромбаAD = BC, AB = DC

Итак: ABCD — параллелограмм (по условию) AD = BC =AB = DC (по доказанному). Какой четырехугольник называется ромбом сформулируйте свойства ромбаABCD — ромб, что и требовалось доказать.

Две теоремы, доказанные выше, называют признаками ромба.

Основные свойства квадрата:

1. Все углы квадрата прямые.

Какой четырехугольник называется ромбом сформулируйте свойства ромба

2. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.

Какой четырехугольник называется ромбом сформулируйте свойства ромба

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Многоугольник

Выпуклый многоугольник

Четырехугольник

Параллелограмм

Признаки параллелограмма

Трапеция

Прямоугольник

Осевая и центральная симметрии

Четырехугольники

Правило встречается в следующих упражнениях:

7 класс

Задание 16,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 434,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 4,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 500,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 751,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1056,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1072,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1130,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1276,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1290,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Источник

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

СОДЕРЖАНИЕ СТАТЬИ

1. Параллелограмм

Сложное слово «параллелограмм»? А скрывается за ним очень простая фигура.

Смотри:

Параллелограмм.Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны

Ну, то есть, взяли две параллельные прямые:

Параллельные прямые

Пересекли ещё двумя:

параллельные прямые 2.

И вот внутри – параллелограмм!

Какие же есть свойства у параллелограмма?

Свойства параллелограмма.

То есть, чем можно пользоваться, если в задаче дан параллелограмм?

На этот вопрос отвечает следующая теорема:

В любом параллелограмме:

  1. Противоположные стороны равны
  2. Противоположные углы равны
  3. Диагонали делятся пополам точкой пересечения

Давай нарисуем все подробно.

Что означает первый пункт теоремы? А то, что если у тебя ЕСТЬ параллелограмм, то непременно

Противоположные стороны параллелограмма равны.  и
 .

Второй пункт означает, что если ЕСТЬ параллелограмм, то, опять же, непременно:

Противоположные углы параллелограмма равны.  и
 

Ну, и наконец, третий пункт означает, что если у тебя ЕСТЬ параллелограмм, то обязательно:

Диагонали в параллелограмме делятся пополам точкой пересечения.  и
 

Видишь, какое богатство выбора? Что же использовать в задаче? Попробуй ориентироваться на вопрос задачи, или просто пробуй все по очереди – какой-нибудь «ключик» да подойдёт.

А теперь зададимся другим вопросом: а как узнать параллелограмм «в лицо»? Что такое должно случиться с четырехугольником, чтобы мы имели право выдать ему «звание» параллелограмма?

На этот вопрос отвечает несколько признаков параллелограмма.

Признаки параллелограмма.

Внимание! Начинаем.

  • Признак 1. Если у четырехугольника две стороны равны и параллельны, то это – параллелограмм.
Признак параллелограмма 1. ;       — параллелограмм.

  — паралелограмм.

  • Признак 2. Если у четырехугольника противоположные стороны равны, то это – параллелограмм.
Признак параллелограмма 2. ;       – параллелограмм.
  • Признак 3. Если у четырехугольника противоположные углы равны, то это – параллелограмм.
Признак параллелограмма 3. ;      – параллелограмм.
  • Признак 4. Если у четырехугольника диагонали делятся точкой пересечения пополам, то это – параллелограмм.
Признак параллелограмма 4. ;       – параллелограмм.

Обрати внимание: если ты нашёл хотя бы один признак в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:

Признаки параллелограмма. Свойства параллелограмма.

2. Прямоугольник

Думаю, что для тебя вовсе не явится новостью то, что

Прямоугольник.Прямоугольник – четырехугольник, все углы которого прямые.

Первый вопрос: а является ли прямоугольник параллелограммом?

Конечно, является! Ведь у него   и   — помнишь, наш признак 3?

А отсюда, конечно же, следует, что у прямоугольника, как и у всякого параллелограмма   и  , а диагонали точкой пересечения делятся пополам.

Но есть у прямоугольника и одно отличительноесвойство.

Свойство прямоугольника

Диагонали прямоугольника.Диагонали прямоугольника равны:  .

Почему это свойство отличительное? Потому что ни у какого другого параллелограмма не бывает равных диагоналей. Сформулируем более чётко.

Свойство прямоугольника.Если у параллелограмма равны диагонали, то это — прямоугольник.

Обрати внимание: чтобы стать прямоугольником, четырехугольнику нужно сперва стать параллелограммом, а потом уже предъявлять равенство диагоналей.

3. Ромб

Ромб.Ромб – четырехугольник, все стороны которого равны между собой.

И снова вопрос: ромб – это параллелограмм или нет?

С полным правом – параллелограмм, потому что у него   и   (вспоминаем наш признак 2).

И снова, раз ромб – параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Читайте также:  Какие полезные свойства у пижмы

Но есть и особенные свойства. Формулируем.

Свойства ромба

  • Свойство 1. Диагонали ромба перпендикулярны.
Свойство ромба 1.  (если ты забыл, напомню:  — значок перпендикулярности)
  • Свойство 2. Диагонали ромба являются биссектрисами его углов.

Посмотри на картинку:

Свойство ромба 2.

Как и в случае с прямоугольником, свойства эти – отличительные, то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм, а именно ромб.

Признаки ромба

  • Признак 1. Если в параллелограмме диагонали перпендикулярны, то это ромб.

Признак ромба 1.

  • Признак 2. Если в параллелограммехотя бы одна из диагоналей делит пополам оба угла, через которые она проходит, то этот параллелограмм – ромб.

Признак ромба 2.

И снова обрати внимание: должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм. Убедись:

Ромбом может быть только параллелограмм.разве это ромб?

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ   – биссектриса углов   и  . Но … диагонали не делятся, точкой пересечения пополам, поэтому   – НЕ параллелограмм, а значит, и НЕ ромб.

4. Квадрат

КвадратКвадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые.

То есть квадрат – это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Квадрат, прямоугольник, ромб.У квадрата угол между диагональю и стороной равен  .

Понятно почему? Квадрат — ромб   – биссектриса угла A, который равен  . Значит   делит   (да и   тоже) на два угла по  .

Диагонали квадрата.Диагонали квадрата равны, перпендикулярны и делятся точкой пересечения пополам.

Ну, это совсем ясно: прямоугольник  диагонали равны; ромб  диагонали перпендикулярны, и вообще – параллелограмм  диагонали делятся точкой пересечения пополам.

Диагональ квадрата.Если сторона квадрата равна  , то его диагональ равна  .

Почему? Ну, просто применим теорему Пифагора к  .

Значит,  .

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны.

Параллелограмм.

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма» означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Итак,

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Параллелограмм. Доказательство теоремы.Давай проведём диагональ  . Что получится?
Два треугольника:   и  .

Раз   – параллелограмм, то :

  •    как накрест лежащие
  •    как накрест лежащие.

Значит,   (по II признаку:   и   — общая.)

Ну вот, а раз  , то   и   – всё! – доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь   (смотри на картинку), то есть  , а   именно потому, что  .

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

Параллелограмм. Доказательство теоремы 2.Мы уже выяснили, что  . Давай снова отметим равные накрест лежащие углы (посмотри и убедись, что все верно).

И теперь видим, что   — по II признаку (  угла и сторона «между» ними).

Параллелограмм. Доказательство теоремы 3.Значит,   (напротив углов   и  ) и   (напротив углов   и   соответственно).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос «как узнать?», что фигура является параллелограммом.

Признак 1. Если у четырехугольника две стороны равны и параллельны, то это параллелограмм.

В значках это так:

Параллелограмм. Признак №1 - 1. ;     – параллелограмм.

Почему? Хорошо бы понять, почему   – этого хватит. Но смотри:

Параллелограмм. Признак №1 - 2.  по 1 признаку:  ,  — общая и   как накрест лежащие при параллельных   и   и секущей  .

А раз  ,

Параллелограмм. Признак №1 - 2то   (лежат напротив   и   соответственно). Но это значит, что   (  и   — накрест лежащие и оказались равны).

Ну вот и разобрались, почему признак 1 верен.

Признак 2. Если у четырехугольника противоположные стороны равны, то это – параллелограмм.

Параллелограмм. Признак №2 - 1 ,     – параллелограмм.

Ну, это ещё легче! Снова проведём диагональ  .

Параллелограмм. Признак №2 - 2.Теперь   просто по трём сторонам.

А значит:

Параллелограмм. Признак №2 - 3.   и   , то есть   – параллелограмм.

Признак 3. Если у четырёхугольника противоположные углы равны, то это – параллелограмм.

Параллелограмм. Признак №3 - 1 ,     – параллелограмм.

И тоже несложно. Но …по-другому!

Параллелограмм. Признак №2 - 2  (ведь   – четырехугольник, а  ,   по условию).

Значит,  . Ух! Но   и   – внутренние односторонние при секущей  !

Поэтому тот факт, что   означает, что  .

А если посмотришь с другой стороны, то   и   – внутренние односторонние при секущей  ! И поэтому  .

Видишь, как здорово?!

Признак 4. Если у четырехугольника диагонали делятся точкой пересечения пополам, то это – параллелограмм.

Параллелограмм. Признак №3 - 1 ;       – параллелограмм.

И опять просто:

Параллелограмм. Признак №3 - 2 ,   как вертикальные  ,  , и  .

Точно так же  ,    , и  .

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:

Достаточные условия для свойств параллелограмма.

Свойства четырехугольников. Прямоугольник.

Прямоугольник. Прямоугольник – четырехугольник, все углы которого прямые.

Свойства прямоугольника:

  1. Прямоугольник – параллелограмм
  2. Диагонали прямоугольника равны

Пункт 1) совсем очевидный – ведь просто выполнен признак 3 (  )

А пункт 2) – очень важный. Итак, докажем, что

диагонали прямоугольника равны.

Диагонали прямоугольника - равны.Раз прямоугольник – это параллелограмм, то  .

А значит,   по двум катетам (  и   — общий).

Ну вот, раз треугольники   и   равны, то у них и гипотенузы   и   тоже равны.

Читайте также:  Какие виды тканей бывают и их свойства

Доказали, что  !

И представь себе, равенство диагоналей – отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Если у параллелограмма равны диагонали, то это прямоугольник.

Давай поймём, почему?

Параллелограмм с равными диагоналями.  – параллелограмм  
  – по условию.
  – теперь уже по трём сторонам.

Значит,   (имеются в виду углы параллелограмма). Но ещё раз вспомним, что   – параллелограмм, и поэтому  .

Значит,  . Ну и, конечно, из этого следует, что каждый из них по  ! Ведь в сумме-то они должны давать  !

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник.

Но! Обрати внимание! Речь идёт о параллелограммах! Не любой четырехугольник с равными диагоналями – прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

Ромб.Ромб – четырехугольник, все стороны которого равны между собой.

И снова вопрос: ромб – это параллелограмм или нет?

С полным правом – параллелограмм, потому что у него   и   (Вспоминаем наш признак 2).

И снова, раз ромб – параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Свойство 1. Диагонали ромба перпендикулярны.

Почему? Ну, раз ромб – это параллелограмм, то его диагонали делятся пополам.

Ромб. Свойство 1.Поэтому   по трём сторонам ( ,   — общая,  ).И значит,  , но они смежные!
  и  .

Свойство 2. Диагонали ромба являются биссектрисами его углов.

Почему? Да, потому же!

Ромб. Свойство 2.Из-за того, что диагонали делятся точкой пересечения пополам, а все стороны ромба равны, весь ромб оказался разделён диагоналями на четыре равных треугольника:  .

Поэтому

Иными словами, диагонали   и   оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти – отличительные, каждые из них является ещё и признаком ромба.

Признаки ромба.

Признак 1. Если в параллелограмме диагонали перпендикулярны то это – ромб.

Ромб. Признак 1. 
   — ромб

Почему? Смотри:

Ромб. Признак 1. Обоснование.  — параллелограмм  .
Но ещё дано, что
    — по двум катетам.
И значит,   – и всё!

Признак 2. Если в параллелограмме хотя бы одна из диагоналей делит пополам оба угла, через которые она проходит, то этот параллелограмм – ромб.

А это почему? А посмотри,

Ромб. Признак 2. , так как   – параллелограмм. Но ещё дано, что   – биссектриса углов   и  .

Значит,   и оба этих треугольника – равнобедренные.

Ромб. Признак 2. Обоснование.Значит,  , то есть   — ромб.

И снова обрати внимание! Не всякий четырёхугольник с перпендикулярными диагоналями – ромб.

Вот пример:

Не каждый четырехугольник - ромб.Это вовсе не ромб, хоть его диагонали и перпендикулярны.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

Квадрат.Квадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые.

То есть квадрат – это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Квадрат. Угол между диагональю и стороной.У квадрата угол между диагональю и стороной равен  .

Понятно, почему? Квадрат — ромб     – биссектриса угла  , который равен  . Значит   делит   (да и   тоже) на два угла по  .

Диагонали квадрата.Диагонали квадрата – равны, перпендикулярны и делятся точкой пересечения пополам.

Ну, это совсем ясно: прямоугольник   диагонали равны; ромб   диагонали перпендикулярны, и вообще – параллелограмм   диагонали делятся точкой пересечения пополам.

Зависимость длины диагонали квадрата, от длины его стороны.Если сторона квадрата равна  , то его диагональ равна  .

Почему? Ну, просто применим теорему Пифагора к  .

Значит,  

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Какой четырехугольник называется ромбом сформулируйте свойства ромба
  • Параллелограмм — четырехугольник, противоположные стороны которого попарно параллельны.

Свойства параллелограмма:

  1. Противоположные стороны равны:  ,  .
  2. Противоположные углы равны:  ,  .
  3. Углы при одной стороне составляют в сумме  :  ,  ,  ,  .
  4. Диагонали делятся точкой пересечения пополам:  .
Какой четырехугольник называется ромбом сформулируйте свойства ромба
  • Прямоугольник – четырехугольник, все углы которого прямые:  .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны:  .
  2. Прямоугольник – параллелограмм (для прямоугольника выполняются все свойства параллелограмма).
Какой четырехугольник называется ромбом сформулируйте свойства ромба
  • Ромб – четырехугольник, все стороны которого равны между собой:  .

Свойства ромба:

  1. Диагонали ромба перпендикулярны:  .
  2. Диагонали ромба являются биссектрисами его углов:  ;  ;  ;  .
  3. Ромб – параллелограмм (для ромба выполняются все свойства параллелограмма).
Какой четырехугольник называется ромбом сформулируйте свойства ромба
  • Квадрат – четырехугольник, у которого все стороны равны между собой, а все углы – прямые:  ;  .

Свойства квадрата:

Квадрат — ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же:

Какой четырехугольник называется ромбом сформулируйте свойства ромба
  • Если сторона квадрата равна  , то его диагональ равна  .

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене «чашка кофе в месяц», 

А также получить бессрочный доступ к учебнику «YouClever», Программе подготовки (решебнику) «100gia», неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

можно кликнув по этой ссылке.

Источник