Какого свойства дисперсии не существует

У этого термина существуют и другие значения, см. Дисперсия.

Диспе́рсия случа́йной величины́ — мера разброса значений случайной величины относительно её математического ожидания. Обозначается в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или .

Квадратный корень из дисперсии, равный , называется среднеквадратическим отклонением, стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Из неравенства Чебышёва следует, что вероятность того, что значения случайной величины отстоят от математического ожидания этой случайной величины более чем на стандартных отклонений, составляет менее . В специальных случаях оценка может быть усилена. Так, например, как минимум в 95 % случаев значения случайной величины, имеющей нормальное распределение, удалены от её среднего не более чем на два стандартных отклонения, а в примерно 99,7 % — не более чем на три.

Определение[править | править код]

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

Пусть  — случайная величина, определённая на некотором вероятностном пространстве. Тогда дисперсией называется

где символ обозначает математическое ожидание[1][2].

Замечания[править | править код]

где  — -ое значение случайной величины,  — вероятность того, что случайная величина принимает значение ,  — количество значений, которые принимает случайная величина.

где  — плотность вероятности случайной величины.

Для получения несмещённой оценки дисперсии случайной величины значение необходимо умножить на . Несмещённая оценка имеет вид:

Свойства[править | править код]

Условная дисперсия[править | править код]

Наряду с условным математическим ожиданием в теории случайных процессов используется условная дисперсия случайных величин .

Условной дисперсией случайной величины относительно случайной величины называется случайная величина

Её свойства:

откуда, в частности, следует, что дисперсия условного математического ожидания всегда меньше или равна дисперсии исходной случайной величины .

Пример[править | править код]

Пусть случайная величина имеет стандартное непрерывное равномерное распределение на , то есть её плотность вероятности задана равенством

Тогда математическое ожидание квадрата случайной величины равно

,

и математическое ожидание случайной величины равно

Дисперсия случайной величины равна

См. также[править | править код]

  • Среднеквадратическое отклонение
  • Моменты случайной величины
  • Ковариация
  • Выборочная дисперсия
  • Независимость (теория вероятностей)
  • Скедастичность
  • Абсолютное отклонение

Примечания[править | править код]

  1. Колмогоров А. Н. Глава IV. Математические ожидания; §3. Неравенство Чебышева // Основные понятия теории вероятностей. — 2-е изд. — М.: Наука, 1974. — С. 63—65. — 120 с.
  2. Боровков А. А. Глава 4. Числовые характеристики случайных величин; §5. Дисперсия // Теория вероятностей. — 5-е изд. — М.: Либроком, 2009. — С. 93—94. — 656 с.

Литература[править | править код]

  • Гурский Д., Турбина Е. Mathcad для студентов и школьников. Популярный самоучитель. — СПб.: Питер, 2005. — С. 340. — ISBN 5469005259.
  • Орлов А. И. Дисперсия случайной величины // Математика случая: Вероятность и статистика — основные факты. — М.: МЗ-Пресс, 2004.

Источник

Дисперсией (рассеянием) дискретной случайной величиныD(X) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

1 свойство. Дисперсия постоянной величины C равна нулю; D(C) = 0.

Доказательство. По определению дисперсии, D(C) = M{[C – M(C)]2}.

Из первого свойства математического ожидания D(C) = M[(C – C)2] = M(0) = 0.

2 свойство. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D(CX) = C2 D(X)

Доказательство. По определению дисперсии, D(CX) = M{[CX – M(CX)]2}

Из второго свойства математического ожидания D(CX)=M{[CX – CM(X)]2}= C2M{[X – M(X)]2}=C2D(X)

3 свойство. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D[X + Y ] = D[X] + D[Y ].

Доказательство. По формуле для вычисления дисперсии имеем

D(X + Y) = M[(X + Y )2] − [M(X + Y)]2

Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим

D(X + Y) = M[X2+ 2XY + Y2] − [M(X) + M(Y )]2 = M(X2) + 2M(X)M(Y) + M(Y2) − M2(X) − 2M(X)M(Y) − M2(Y) = {M(X2) − [M(X)]2}+{M(Y2) − [M(Y)]2} = D(X) + D(Y). Итак, D(X + Y) = D(X) + D(Y)

4 свойство. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X − Y) = D(X) + D(Y)

Доказательство. В силу третьего свойства D(X − Y) = D(X) + D(–Y). По второму свойству

D(X − Y) = D(X) + (–1)2 D(Y) или D(X − Y) = D(X) + D(Y)

Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.

Корреляционный момент.Характеристикой зависимости между случайными величинами и служит математическое ожидание произведения отклонений и от их центров распределений (так иногда называют математическое ожидание случайной величины), которое называется корреляционным моментом или ковариацией:

Для вычисления корреляционного момента дискретных величин используют формулу:

а для непрерывных величин – формулу:

Коэффициентом корреляции rxy случайных величин X и Y называют отношение корреляционного момента к произведению среднеквадратичных отклонений величин:
— коэффициент корреляции;

Свойства коэффициента корреляции:

Читайте также:  Какие свойства проявляет фосфин кислотные или основные почему

1. Если Х и У независимые случайные величины, то r =0;

2. -1≤ r ≤1 .При этом, если |r| =1, то между Х и У функциональная, а именно линейная зависимость;

3. r характеризует относительную величину отклонения М(ХУ) от М(Х)М(У), и т.к. отклонение имеет место только для зависимых величин, то rхарактеризует тесноту зависимости.

Линейная функция регрессии.

Рассмотрим двумерную случайную величину (X, Y), где X и У — зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X:

где α и β — параметры, подлежащие определению.

Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид

где mx=M(X), my=M(Y), σx=√D(X), σy=√D(Y), r=µxy/(σxσy)—коэффициент корреляции величин X и Y.

Коэффициент β=rσy/σx называют коэффициентом регрессии Y на X, а прямую

называют прямой среднеквадратической регрессии Y на X.

Неравенство Маркова.

Формулировка неравенства Маркова

Если среди значений случайной величины Х нет отрицательных, то вероятность того, что она примет какое-нибудь значение, превосходящее положительное число А, не больше дроби , т.е.

,

а вероятность того, что она примет какое-нибудь значение, не превосходящее положительного числа А, не меньше , т.е.

.

Неравенство Чебышева.

Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ε, не меньше, чем 1 −D[X]ε2

P(|X – M(X)| < ε) ≥ 1 –D(X)ε2

Доказательство. Так как события, состоящие в осуществлении неравенств

P(|X−M(X)| < ε) и P(|X – M(X)| ≥ε) противоположны, то сумма их вероятностей равна единице, т. е.

P(|X – M(X)| < ε) + P(|X – M(X)| ≥ ε) = 1.

Отсюда интересующая нас вероятность

P(|X – M(X)| < ε) = 1 − P(|X – M(X)| > ε).

Таким образом, задача сводится к вычислению вероятности P(|X –M(X)| ≥ ε).

Напишем выражение для дисперсии случайной величины X

D(X) = [x1 – M(x)]2p1 + [x2 – M(x)]2p2 + . . . + [xn – M(x)]2pn

Все слагаемые этой суммы неотрицательны. Отбросим те слагаемые, у которых |xi – M(X)| < ε (для оставшихся слагаемых |xj – M(X)| ≥ ε), вследствие чего сумма может только уменьшиться. Условимся считать для определенности, что отброшено k первых слагаемых (не нарушая общности, можно считать, что в таблице распределения возможные значения занумерованы именно в таком порядке). Таким образом,

D(X) ≥ [xk+1 – M(x)]2pk+1 + [xk+2 – M(x)]2pk+2 + . . . + [xn – M(x)]2pn

Обе части неравенства |xj –M(X)| ≥ ε (j = k+1, k+2, . . ., n) положительны, поэтому, возведя их в квадрат, получим равносильное неравенство |xj – M(X)|2 ≥ε2.Заменяя в оставшейся сумме каждый из множителей

|xj – M(X)|2числом ε2(при этом неравенство может лишь усилиться), получим

D(X) ≥ ε2(pk+1 + pk+2 + . . . + pn)

По теореме сложения, сумма вероятностей pk+1+pk+2+. . .+pn есть вероятность того, что X примет одно, безразлично какое, из значений xk+1 +xk+2 +. . .+xn, а при любом из них отклонение удовлетворяет неравенству |xj – M(X)| ≥ ε. Отсюда следует, что сумма pk+1 + pk+2 + . . . + pn выражает вероятность

P(|X – M(X)| ≥ ε).

Это позволяет переписать неравенство для D(X) так

D(X) ≥ ε2P(|X – M(X)| ≥ ε)

или

P(|X – M(X)|≥ ε) ≤D(X)/ε2

Окончательно получим

P(|X – M(X)| < ε) ≥D(X)/ε2

Теорема Чебышева.

Теорема Чебышева. Если — попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число ε, вероятность неравенства

будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами, в условиях теоремы

Доказательство. Введем в рассмотрение новую случайную величину — среднее арифметическое случайных величин

Найдем математическое ожидание Х. Пользуясь свойствами математического ожидания (постоянный множитель можно вынести за знак математического ожидания, математическое ожидание суммы равно сумме математических ожиданий слагаемых), получим

(1) 

Применяя к величине Х неравенство Чебышева, имеем

или, учитывая соотношение (1)

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

По условию дисперсии всех случайных величин ограничены постоянным числом С, т.е. имеют место неравенства:

поэтому

Итак,

(2) 

Подставляя правую часть (2) в неравенство (1) (отчего последнее может быть лишь усилено), имеем

Отсюда, переходя к пределу при n→∞, получим

Наконец, учитывая, что вероятность не может превышать единицу, окончательно можем написать

Теорема доказана.

Теорема Бернулли.

Теорема Бернулли. Если в каждом из n независимых испытаний вероятность p появления события A постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Читайте также:  Благодаря каким свойствам воздуха мы видим все вокруг

Другими словами, если ε — сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство

Доказательство. Обозначим через X1 дискретную случайную величину — число появлений события в первом испытании, через X2 — во втором, …, Xn — в n-м испытании. Ясно, что каждая из величин может принять лишь два значения: 1 (событие A наступило) с вероятностью p и 0 (событие не появилось) с вероятностью .

Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины попарно независимы и дисперсии их ограничены. Оба условия выполняются Действительно, попарная независимость величин следует из того, что испытания независимы. Дисперсия любой величины равна произведению ; так как , то произведение не превышает 1/4и, следовательно, дисперсии всех величин ограничены, например, числом .

Применяя теорему Чебышева (частный случай) к рассматриваемым величинам, имеем

Приняв во внимание, что математическое ожидание a каждой из величин (т.е. математическое ожидание числа появлений события в одном испытании) равно вероятности p наступления события, получим

Остается показать, что дробь

равна относительной частоте появлений события A в испытаниях. Действительно, каждая из величин при появлении события в соответствующем испытании принимает значение, равное единице; следовательно, сумма равна числу появлений события в испытаниях, а значит,

Учитывая это равенство, окончательно получим



Источник

Важное значение
для характеристики случайных величин
имеет дисперсия.

Определение.
Дисперсией
случайной
величины называется математическое
ожидание квадрата отклонения случайной
величины от ее математического ожидания

Какого свойства дисперсии не существует.

Слово «дисперсия»
означает «рассеяние», т.е. дисперсия
характеризует рассеяние (разбросанность)
значений случайной величины около ее
математического ожидания.

Из определения
следует, что дисперсия – это постоянная
величина, т.е. числовая характеристика
случайной величины, которая имеет
размерность квадрата случайной величины.

С
вероятной точки зрения,
дисперсия является мерой рассеяния
значений случайной величины около ее
математического ожидания.

Действительно,
рассмотрим дискретную случайную
величину, которая имеет конечное
множество значений. Тогда, согласно
определению, дисперсия вычисляется по
формуле

Какого свойства дисперсии не существует. (2)

Если
дисперсия
Какого свойства дисперсии не существуетмала, то из формулы (2) следует, что малы
слагаемыеКакого свойства дисперсии не существует.
Поэтому, если не рассматривать значенияКакого свойства дисперсии не существует,
которым соответствует малая вероятность
(такие значения практически невозможны),
то все остальные значенияКакого свойства дисперсии не существуетмало отклоняются от математического
ожиданияКакого свойства дисперсии не существует.
Следовательно,при
малой дисперсии возможные значения
случайной величины концентрируются
около ее математического ожидания (за
исключением, может быть, сравнительно
малого числа отдельных значений). Если
дисперсия
Какого свойства дисперсии не существуетвелика, то это означает большой разброс
значений случайной величины, концентрация
значений случайной величины около
какого-нибудь центра исключается.

Пример.Пусть
случайные величины
Какого свойства дисперсии не существуетиКакого свойства дисперсии не существуетимеют следующее законы распределения

Таблица
9.
Таблица 10.

Какого свойства дисперсии не существует

-0,1

0,1

0,4

Какого свойства дисперсии не существует

-10

0,5

10

Какого свойства дисперсии не существует

0,3

0,15

0,3

0,25

Какого свойства дисперсии не существует

0,4

0,2

0,4

Найти математические
ожидания и дисперсии этих случайных
величин.

Решение.
Воспользовавшись
формулой для вычисления математических
ожиданий, находим

Какого свойства дисперсии не существует.

Какого свойства дисперсии не существует.

С помощью формулы
(2) вычислим дисперсии заданных случайных
величин

Какого свойства дисперсии не существуетКакого свойства дисперсии не существует.

Из
полученных результатов делаем вывод:
математические ожидания случайных
величин
Какого свойства дисперсии не существуетиКакого свойства дисперсии не существуетодинаковы, однако дисперсии различны.
Дисперсия случайной величиныКакого свойства дисперсии не существуетмала и мы видим, что ее значение
сконцентрированы около ее математического
ожиданияКакого свойства дисперсии не существует.
Напротив, значения случайной величиныКакого свойства дисперсии не существуетзначительно рассеяны относительноКакого свойства дисперсии не существует,
а поэтому дисперсияКакого свойства дисперсии не существуетимеет большое значение. ●

Свойства дисперсии

Свойство
1.

Дисперсия постоянной величины равна
нулю

Какого свойства дисперсии не существует.

Доказательство.

Свойство
2
.
Постоянный множитель можно выносить
за знак дисперсии, возводя его в квадрат

Какого свойства дисперсии не существует.

Доказательство.

Свойство
3.

Дисперсия
суммы двух независимых случайных величин
равна сумме их дисперсий

Какого свойства дисперсии не существует.

Доказательство.Воспользуемся
определением дисперсии и свойствами
3, 2 математического ожидания, имеем

Какого свойства дисперсии не существует

Какого свойства дисперсии не существует(3)

Определение.Математическое
ожидание произведения отклонений
случайных величин

Какого свойства дисперсии не существуети
Какого свойства дисперсии не существует
от их математических ожиданий называется
корреляционным
моментом
этих
величин

Какого свойства дисперсии не существует.

Если
случайные величины, величины
Какого свойства дисперсии не существуетиКакого свойства дисперсии не существуетнезависимы, то, воспользовавшись
свойствами 6 и 7 математических ожиданий,
находим

Какого свойства дисперсии не существует.

Поэтому из формулы
3 имеем

Какого свойства дисперсии не существует,

откуда окончательно
следует

Какого свойства дисперсии не существует.

С помощью метода
математической индукции это свойство
может быть распространено на случай
любого конечного числа независимых
случайных величин.

Свойство
4.
Дисперсия
суммы независимых случайных величин
Какого свойства дисперсии не существуетравна сумме их дисперсий

Какого свойства дисперсии не существует.

Свойство
5.

Дисперсия
разности двух случайных независимых
величин равна сумме дисперсий этих
величин

Какого свойства дисперсии не существует.

Доказательство.

Свойство
6.
Дисперсия
случайной величины равна математическому
ожиданию

квадрата этой
величины минус квадрат ее математического
ожидания

Какого свойства дисперсии не существует.

(Эта формула
применяется для вычисления дисперсии)

Доказательство.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #

    28.02.2016185.86 Кб54.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Свойства дисперсии.

1. Дисперсия постоянной величины равна 0.

.

2. Если из каждой варианты отнять постоянное число А, то значение дисперсии не изменится. Уменьшение всех значений признака на одну и ту же величину А не меняет величины дисперсии:

.

Значит, средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.

Читайте также:  Какой четырехугольник называется ромбом перечислите свойства ромба

3. Если все значения признака разделить на какое-то постоянное число А, то дисперсия уменьшится в А2 раз. Уменьшение всех значений признака в А раз уменьшает дисперсию в А2 раз, а среднее квадратическое отклонение – в А раз.

Значит, все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число:

.

4. Если исчислить средний квадрат отклонений от любой величины А, которая отличается от средней арифметической , тогда он будет больше среднего квадрата отклонения σ2, исчисленной от средней арифметической:

Средний квадрат отклонений при этом будет больше на вполне определенную величину – на квадрат разности средней и этой условно взятой величины, т.е. на :

, или .

Обоснование:

Если A=0, тогда

Таким образом:

Значит, дисперсия от средней всегда меньше дисперсий, исчисленных от любых других величин, т.е. она имеет свойство минимальности.

Если воспользоваться 3 и 4 свойствами, то получим формулу (способ моментов):

где m1, m2 – моменты первого и второго порядков соответственно, А – центральное значение (величина) варианта, i – величина интервала.

Пример. Расчет дисперсии способом моментов.

Распределение предприятий по объему товарооборота.

Группы предприятий по объему товарооборота, млн. руб.

Число предприятий (f)

Середина интервала (x)

x*f

60-80

21

70

 

-2

-42

84

80-100

27

90

 

-1

-27

27

100-120

24

110

 

120-140

16

130

 

1

16

16

140-160

8

150

 

2

16

32

160-180

4

170

 

3

12

36

Всего:

100

   

-25

195

i=20 млн. руб.

Среднее квадратическое отклонение играет важную роль в анализе рядов распределения. В условиях нормального распределения существует следующая зависимость между величиной среднего квадратического отклонения и количеством наблюдений:

— в пределах  располагается 0,683, или 68,3%, количество наблюдений;

—  — 0,954, или 95,4%, количества наблюдений;

— в пределах  — 0,997, или 99,7%, количества наблюдений.

В действительности на практике почти не встречаются отклонения, которые превышают . Отклонение  может считаться максимально возможным. Это положение называют «правилом трех сигм».

Виды дисперсий, правила сложения дисперсий.

Для того, чтобы определить влияние отдельных факторов, характеризующих колеблемость индивидуальных значений признака, нужно разделить изучаемую совокупность на группы, однородные по признаку-фактору.

При этом можно определить три вида дисперсии:

— общая дисперсия;

— межгрупповая дисперсия;

— внутригрупповая дисперсия.

Общая дисперсия (σ2) измеряет вариацию признака по всей совокупности под влиянием всех факторов:

Межгрупповая дисперсия ()отражает вариацию изучаемого признака, которая возникает под влиянием признака-фактора, положенного в основу группировки. Она характеризует колеблемость групповых средних  около общей средней :

, где ni – численности отдельных групп.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящей под влиянием неучтенных факторов и независящую от признака фактора, положенного в основание группировки. Она исчисляется следующим образом:

Определим среднюю из внутригрупповых дисперсий:

Общая дисперсия, межгрупповая дисперсия и средняя из внутригрупповых дисперсий связаны между собой следующим соотношением:

Данное соотношение называется правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, появляющейся под влиянием всех прочих факторов, и дисперсии, возникающей за счет группировочного признака. Широко применяется при исчислении показателей тесноты связи, дисперсионном анализе и в других случаях.

Показатель, представляющий собой долю межгрупповой дисперсии, называется эмпирическим коэффициентом детерминации:

Этот коэффициент показывает долю общей вариации изучаемого признака, обусловленную вариацией группировочного признака.

Эмпирическое корреляционное отношение:

, где  0≤η≤1.

Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака.

Если η=0, то группировочный признак не оказывает влияние на результативный. Если η=1, то результативный признак изменяется только в зависимости от признака, положенного в основание группировки.

Квантили.

Рис. Ранжирование ряда распределения.

В вариационном ряду распределения кроме медианы можно определить квартили, децили и процентили, которые получили общее название квантили.

Квартили представляют собой значение признака, делящее ранжированную совокупность на четыре равновеликие части. Первый квартиль (нижний квартиль) Q1, отделяющий одну четвертую часть совокупности, с наименьшими значениями признака. Q2 – средний квартиль, медиана, делящая ранжированную совокупность пополам. Q3 – верхний квартиль, отделяющий одну четвертую часть совокупности с наибольшими значениями признака.

Децили – варианты, делящие совокупность на 10 равных частей. Первый дециль D1 отделяет от начала совокупности одну десятую часть ряда с наименьшими значениями признака. Второй дециль отделяет две десятые ряда. Перцентили – варианты, которые делят совокупность на сто равных частей. Они используются для детального изучения структуры вариационного ряда.

Источник