Какое свойство полупроводников используется в электрическом термометре

Какое свойство полупроводников используется в электрическом термометре thumbnail

Здравствуйте уважаемые читатели сайта sesaga.ru. На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Полупроводниковые радиокомпоненты

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается.

Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.

Межатомная связь полупроводников

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

Упрощенная межатомная связь в полупроводнике

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.

Явление возникновения тока в полупроводнике

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку. Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Читайте также:  В каких рядах кислотные свойства водородных соединений усиливаются

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле, этот процесс непрерывен: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в следующей части рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1. Борисов В.Г. — Юный радиолюбитель. 1985г.
2. Сайт academic.ru: https://dic.academic.ru/dic.nsf/es/45172.

Источник

— вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит, что электрическая проводимость (1/R ) увеличивается.  Наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

Полупроводники чистые (без примесей)

Если полупроводник чистый( без примесей), то он обладает собственной проводимостью? которая невелика.

Собственная проводимость бывает двух видов:

1) электронная ( проводимость «n » — типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны — сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности эл.поля.

Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2) дырочная ( проводимость » p» — типа )

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном — «дырка».

Читайте также:  Какие полезные свойства есть у фиников

Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение «дырки» равноценно перемещению положительного заряда.

Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания , разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением ( фотопроводимость ) и действием сильных электрических полей

Общая проводимость чистого полупроводника складывается из проводимостей «p» и «n» -типов 

и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

— у них существует собственная + примесная проводимость

Наличие примесей сильно увеличивает проводимость.

При изменении концентрации примесей изменяется число носителей эл.тока — электронов и дырок.

Возможность управления током лежит в основе широкого применения полупроводников.

1) донорные примеси ( отдающие )

— являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.

Это проводники » n » — типа, т.е. полупроводники с донорными примесями, где основной носитель заряда — электроны, а неосновной — дырки.

Такой полупроводник обладает электронной примесной проводимостью.

Например — мышьяк.

2) акцепторные примеси ( принимающие )

— создают «дырки» , забирая в себя электроны.

Это полупроводники » p «- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда — дырки, а неосновной — электроны.

Такой полупроводник обладает дырочной примесной проводимостью.

Например — индий.

Электрические свойства «p-n» перехода

«p-n» переход (или электронно-дырочный переход) — область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.

При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.

Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.

Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода:

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводник с одним «p-n» переходом называется полупроводниковым диодом.

При наложении эл.поля в одном направлении сопротивление полупроводника велико,

в обратном — сопротивление мало.

Полупроводниковые диоды основные элементы выпрямителей переменного тока.

Полупроводниковые транзисторы

— также используются свойства» р-n «переходов,

— транзисторы используются в схемотехнике радиоэлектронных приборов.

???Вопросы

  1. Что называют полупроводниками?
  2. Какие вещества относятся к полупроводникам?
  3. Чем отличаются проводники от полупроводников?
  4. Какими зарядами создается электрический ток в полупроводниках?
  5. Какие вы знаете примеси?
  6. Какие полупроводники называют n -типа?
  7. Какие полупроводники называют p- типа?
  8. Что называют p-n переходом?
  9. Какие вы знаете полупроводниковые приборы?
  10. Где применяются полупроводники?

Источник

ПОЛУПРОВОДНИКИ. СОБСТВЕННАЯ И ПРИМЕСНАЯ ПРОВОДИМОСТЬ

Различают собственные и примесные полупроводники. Химически чистые полупроводники называют собственными, а их электропроводность — собственной проводимостью. Собственными полупроводниками являются Ge, Se, химические соединения JnSb, GaAs, CdS и др. На внешней оболочке атомов германия и кремния находится четыре валентных электрона, которые ковалентно связаны с валентными электронами соседних атомов (рис. 20.1, а). Очевидно,

Какое свойство полупроводников используется в электрическом термометре

Рис. 20.1

что в химически чистых кристаллах таких полупроводников отсутствуют свободные валентные электроны. При подводе к германию энергии в количестве, не меньшем, чем ширина А ^запрещенной зоны, происходит нарушение ковалентной связи в атомах кристалла и переход электронов из валентной зоны в зону проводимости (рис. 20.1, б и 20.2). Величину AWназывают энергией активации собственной проводимости. Проводимость собственных полупроводников, обусловленную электронами, называют электронной проводимостью, или проводимостью п-типа (от лат. negative — отрицательный).

Какое свойство полупроводников используется в электрическом термометре

Нарушение ковалентной связи в атомах кристалла полупроводника при переходе электрона из валентной зоны в зону проводимости означает, что в оставленном им месте возникает избыток положительного заряда, получивший название дырки. Положительная дырка, являясь положительным зарядом, по величине равна заряду электрона. С позиций зонной теории это означает, что в валентной зоне кристалла появился вакантный энергетический уровень.

Во внешнем энергетическом поле на вакансию (освободившееся от электрона место — дырку) перемещается электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т.д. Движение электронов проводимости и дырок в полупроводнике при отсутствии электрического поля является хаотическим. При наличии внешнего электрического поля электроны проводимости движутся против поля, а дырки — по направлению поля. Электропроводность собственных полупроводников, обусловленная перемещением квазичастиц — дырок, называют дырочной проводимостью, или проводимостью p-типа (от лат. positive — положительный).

Таким образом, в собственных полупроводниках имеет место двойной механизм проводимости — электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне. Л следовательно, равны и концентрации электронов проводимости пе и дырок пр. Последние быстро возрастают с повышением температуры по закону пе = пр = сехр(—AJV/ (2кТ)), м-3, где с — постоянная, зависящая от температуры и динамической (эффективной) массы квазичастицы (электрона проводимости и дырки), участвующей в электропроводности. Удельная электропроводность полупроводников также растет с повышением температуры: у = у0ехр(-AW/ (2кТ)), (Ом • м)-1, а удельное сопротивление полупроводников резко уменьшается: р = р0ехр(ДИ// {2кТ)), Ом • м, где у0 и р0 — индивидуальные постоянные полупроводника. Подобной зависимостью у и р от температуры полупроводники существенно отличаются от металлов.

Читайте также:  Какие свойства желатин на волосы

В полупроводниках наряду с процессом генерации электронов проводимости и дырок идет одновременно и обратный процесс рекомбинации. Потерявшие часть своей энергии, электроны проводимости захватываются дырками. Скорость рекомбинации и скорость образования электронов проводимости и дырок одинаковы.

В германии при комнатной температуре одна пара носителей заряда приходится примерно на 109атомов.

Полупроводники имеют высокое удельное сопротивление и его резко выраженную зависимость от температуры. Это позволило использовать полупроводники в термометрах, называемых термисторами. Они имеют малые размеры и чрезвычайно высокую чувствительность — термистор реагирует даже на изменение освещенности. Может быть использован для измерения температуры очень малых объектов. Создан (1997 г.) стабильный высокотемпературный — до 1000 °С — термистор для измерения температуры продуктов сгорания. Это полупроводниковая керамика, нелинейно меняющая электросопротивление с температурой.

Какое свойство полупроводников используется в электрическом термометре

Рис. 20.3

Идеально чистых полупроводников в природе нет. Наличие даже небольшой примеси в полупроводнике оказывает значительное влияние на его проводимость. Например, введение в кремний примерно 0,001% бора увеличивает его электропроводность в 1000 раз. Электропроводность полупроводников, обусловленную примесями, называют примесной проводимостью, а полупроводник — примесным. Примесями являются атомы или ионы посторонних элементов, различные дефекты и искажения кристаллической решетки. Некоторые примеси обогащают полупроводник свободными электронами, обеспечивая ему в электрическом поле электронную проводимость. Примеси, являющиеся источником электронов, называют донорами, а полупроводники — электронными, или полупроводниками п-типа. Таким образом, электронная примесная проводимость возникает в полупроводниках с примесью, валентность которой на единицу больше валентности основных атомов.

Например, при замещении в решетке германия одного четырехвалентного атома Ge пятивалентным атомом мышьяка один электрон атома примеси не может образовать ковалентную связь с атомами германия и оказывается лишним (рис. 20.3). При тепловых колебаниях решетки он способен оторваться от атома и стать свободным. Образование свободного электрона не нарушает ковалентной связи атомов. Избыточный положительный заряд, возникающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может.

Введение примеси искажает энергетическое поле кристалла и приводит к возникновению в запрещенной зоне энергетического уровня Д свободных электронов мышьяка (рис. 20.4). Такой уровень называют

Какое свойство полупроводников используется в электрическом термометре

донорным или примесным уровнем. Этот уровень в рассматриваемом случае располагается от дна зоны проводимости на расстоянии A Wa = 0,015 эВ. Поскольку A Wa AJV, то уже при обычных температурах энергия теплового движения достаточна для перевода свободных электронов с уровня доноров в зону проводимости.

Какое свойство полупроводников используется в электрическом термометре

Рис. 20.5

Есть и другой тип примеси, который обогащает полупроводник дырками и обеспечивает ему в электрическом поле дырочную проводимость. Например, при замещении в решетке германия одного четырехвалентного атома Ge трехвалентным атомом бора не хватает одного электрона для образования насыщенной ковалентной связи. Недостающий четвертый электрон может быть заимствован у соседнего атома основного вещества — германия, где, соответственно, образуется дырка (рис. 20.5). Последовательное заполнение образующихся дырок электронами эквивалентно движению дырок и приводит к электропроводности в полупроводнике. Дырки при этом не остаются локализованными, а перемещаются в решетке германия как свободные положительные заряды. Отрицательный же заряд, возникающий вблизи атома бора, связан с ним и по решетке перемещаться не может.

Введение трехвалентного бора в решетку германия приводит к возникновению в запрещенной зоне энергетического уровня, не занятого электронами (рис. 20.6). Такой уровень называют акцептор-

Какое свойство полупроводников используется в электрическом термометре

Рис. 20.6

ным, и располагается он выше верхнего края валентной зоны основного кристалла. Поскольку Д^А « A W, то уже при обычных температурах электроны из валентной зоны переходят на акцепторный уровень, вступают в связь с атомами бора и теряют способность к перемещениям по решетке германия. В проводимости полупроводника они не участвуют. Носителями тока являются дырки, возникающие в валентной зоне.

Таким образом, дырочная проводимость возникает в полупроводниках с примесью, валентность которой на единицу меньше валентности основных атомов. Носителями электрического или теплового тока являются дырки.

Примесные полупроводники с такой проводимостью называются дырочными, или полупроводниками /7-типа. Примеси, захватывающие электроны из валентной зоны полупроводника, называют акцепторами, а энергетические уровни примесей — акцепторными уровнями.

Итак, собственная проводимость полупроводников осуществляется одновременно электронами и дырками, а примесная обусловлена в основном носителями одного знака: электронами — в случае донорной примеси и дырками — в случае акцепторной.

Источник