Какое свойство называется характеристическим

Элементы теории множеств

(Методическое пособие для учащихся

Х классов физико-математического профиля)

Автор: Хомутова Л.Ю.

Москва

Год

«Множество есть многое,
мыслимое нами как единое».

Г. Кантор

Множества и их элементы

В повседневной жизни постоянно различные совокупности предметов называют одним словом. Совокупность документов называют архивом, собрание музыкантов – оркестром, группу лошадей – табуном, собрание книг – библиотекой и т. д.

Математическим понятием, отражающим объединение некоторых объектов, предметов или понятий в единую совокупность, является понятие множества. Это понятие в математике является первичным, не определяемым, таким же, как понятие точки и прямой в геометрии, – к более простым понятиям оно не сводится.

Приведем примеры множеств:

· Множество всех людей, живущих в настоящее время на Земле.

· Множество всех рыб в Тихом океане.

· Множество звезд в Галактике.

· Множество всех натуральных чисел.

· Множество всех действительных чисел , удовлетворяющих условию .

· Множество учащихся данной школы.

Предметы, объекты, образующие данное множество, называются его элементами. Например, Александр I является элементом множества российских императоров, а число 9 – элементом множества натуральных чисел, а число не является элементом множества целых чисел.

Обычно множества обозначаются латинскими прописными буквами A, B, C, D ,X ,Y ,W и т. д., а их элементы – строчными буквами a, b, c, d, x, y, w и т. д. То обстоятельство, что объект a является элементом множества А, записывают так: . Если объект а не является элементом множества А, то пишут: .

Множества А и В называются равными, если они содержат одни и те же элементы. Например, равны множества и . Равенство множеств А и В записывают в виде А=В.

Характеристическое свойство множества

Различают множества конечные и бесконечные. Конечным называется множество, состоящее из конечного числа элементов. Среди конечных множеств выделяют пустое множество, не имеющего ни одного элемента. Его называют пустым множеством и обозначают символом . Примерами пустых множеств являются множество людей выше трех метров роста, множество нечетных чисел, делящихся на два, и т. д. Множество, не являющееся конечным, называется бесконечным множеством.

Имеется два существенно различных способа задания множества. Первый способ состоит в том, что множество задается указанием всех его элементов. В этом случае говорят, что множество задано перечислением всех своих элементов, или списком элементов.

Перечислением элементов можно задать лишь конечные множества. И даже для них это не всегда легко сделать: трудно перечислить все элементы конечного множества, состоящего из всех людей, живущих на Земле.

Второй способ задания множества применим как к конечным, так и к бесконечным множествам. Он состоит в том, указывается свойство, которым обладают все элементы рассматриваемого множества и не обладают никакие другие объекты. Такое свойство называется характеристическим свойством множества. Если множество А задано характеристическим свойством Р, то пишут:

.

Эту запись читают так: множество А состоит из тех и только тех элементов, которые обладают свойством Р.

означает, что множество В состоит из всех нечетных натуральных чисел.

Подмножества

Множество В является подмножеством множества А, если каждый элемент х из множества В является вместе с тем и элементом множества А. В этом случае пишут: . Здесь знак является знаком включения одного множества в другое.

Рассмотрим множества:

1) В – множество всех четырехугольников,

2) С – множество всех параллелограммов,

3) D – множество всех прямоугольников,

4) Е – множество всех квадратов.

В смысле множества фигура каждого следующего типа является частным случаем фигуры предыдущего типа (параллелограмм – частный случай четырехугольника, прямоугольник – параллелограмма, квадрат – прямоугольника). Это означает, что каждое следующее множество является подмножеством предыдущего. Поэтому

.

Для иллюстрации соотношения между множествами пользуются схемами, называемыми диаграммами Эйлера – Венна, на которых множества изображаются овалами, в частности кругами.

Леонард Эйлер (1707 – 1783) – один из величайших математиков {VIII в., швейцарец; Дж. Венн (1834 – 1923) – английский математик.

На рисунке 1 с помощью кругов показано соотношение между множествами B, С, D, Е.

 
 

Рис. 1

Операции над множествами

Пересечение множеств

Если даны два множества, то можно образовать новое множество, составленное из общих элементов этих множеств. Например, общей частью множеств будет множество , которое называют пересечением множеств А и В.

Определение. Пересечением множеств А и В называется новое множество, содержащее те и только те элементы, которые входят одновременно и в множество А, и в множество В.

Пересечение множеств А и В обозначают :

.

Например, если А – множество всех прямоугольников, В – множество всех ромбов, то – множество всех квадратов.

Геометрическую иллюстрацию операции пересечения множеств А и В дают диаграммы Эйлера – Венна (рис. 2).

а) б)

Рис. 2

На рисунке 2,а заштриховано множество , на рисунке 2,б множества А и В не пересекаются, т. е. .

Операция пересечения множеств применяется там, где требуется найти элементы, удовлетворяющие сразу двум условиям. Например, множество натуральных чисел, кратных 15, – это пересечение множества натуральных чисел, кратных 3, и множества натуральных чисел, кратных 5, т. е.

.

Объединение множеств

Из двух множеств А и В можно образовать новое множество, объединяя все элементы множества А и все элементы множества В. Например, объединяя элементы множества с элементами множества , получим новое множество , которое называют объединением множеств А и В. При этом общие элементы 3 и 5 входят в объединение один раз.

Читайте также:  Какие механические свойства определяются при испытании металлов на растяжение

Определение. Объединением множеств А и В называется новое множество, состоящее из тех и только тех элементов, которые входят хотя бы в одно из множеств А или в множество В.

Объединение множеств А и В обозначают :

.

а) б)

Рис. 3.

Диаграммы Эйлера – Венна, соответствующие операции объединения множеств А и В, построены на рисунке 3. На них заштрихованы множества .

Разность множеств

Определение. Разностью двух множеств А и В называют такое множество, в которое входят элементы из множества А, не принадлежащие множеству В.

Разность множеств А и В обозначают А/В. Диаграммы Эйлера – Венна, соответствующие операции вычитания множеств А и В, построены на рисунке 4. На нем заштрихованы множества А/В. Если А=В, то А/В= .

А

а) б) в)

Рис. 4.

В случае, когда В есть подмножество множества А, разность А/В называют дополнением множества В в множестве А и обозначают . Например, дополнением множества четных чисел в множестве всех целых чисел является множество нечетных чисел.

Дата добавления: 2016-07-29; просмотров: 10532 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Всякое свойство можно рассматривать как принадлежность его некоторым предметам.

Например, свойством «быть красным» обладают некоторые цве­ты, ягоды, автомашины и другие предметы. Свойством «быть круг­лым» обладают луна, мяч, колеса велосипедов и автомашин, детали различных машин и станков и др.

Таким образом, с каждым свойством связывается множество (предметов), обладающих этим свойством. Говорят также, что мно­жество характеризуется данным свойством, или множество задано указанием характеристического свойства.

Под характеристическим свойством множества понимают такое свойство, которым обладают все предметы, принадлежащие этому множеству (элементы этого множества), и не обладает ни один предмет, не принадлежащий ему (не являющийся его элементом).

Иногда свойство отождествляется с множеством предметов, характеризуемым этим свойством. Говоря «круглое», мы одноврег менно мыслим о множестве всех круглых предметов.

Если некоторое множество А задано указанием характеристиче­ского свойства Р, то это записывается следующим образом:

А=хР(х))

и читается так: «А — множество всех х таких, что х обладает свой­ством Р», или, короче, «Л — множество всех х, обладающих свой­ством Р». Когда говорят: «множество всех предметов, обладающих свойством Р», имеются в виду те и. только те предметы, которые обладают этим свойством.

Таким образом, если множество Л задано характеристическим свойством Р, то это означает, что оно состоит из всех предметов, обладающих этим свойством, и только из них. Если какой-нибудь предмет а обладает свойством Р, то он принадлежит множеству Л и, наоборот, если предмет а принадлежит множеству Л, то он

обладает свойством Р.

Предложение «предмет а принадлежит множеству Л», или «пред-мета — элемент множества Л», обозначается кратко «а^А». Предложение «предмет а обладает свойством Р» — «Р (а)». Эти два предложения р а в н о с и л ь н ы, т. е. выражают одну и ту же мысль в разной форме, первое — на языке множеств, второе — на языке свойств. Высказывания, выражаемые этими двумя предложениями, одновременно истинны или ложны: истинны, если предмет а дей­ствительно принадлежит множеству Л (обладает свойством Р), ложны в противном случае. Для обозначения равносильности двух предложений применяется знак о.

Таким образом, если А = {хР {х), то пишут: а^АоР (а). Например, если А — множество детей, живущих на Ленинском проспекте, то предложения «Саша живет на Ленинском проспекте» и «Саша принадлежит множеству детей, живущих на Ленинском проспекте» (хотя так обычно не говорят) равносильны. Они выра­жают истинные высказывания, если Саша, о котором идет речь в них, действительно живет на Ленинском проспекте, и ложные высказы­вания в противном случае.

Предложение Р (х), т. е. «* обладает свойством Р>, например живет на Ленинском проспекте», или «…живет на Ленинском проспекте», не выражает высказывания, так как оно содержит «пустое место» (переменную) и бессмысленно задавать вопрос, истинно оно или ложно. Оно обращается в высказывание истинное или ложное, если вместо переменной (на пустое место) поставить какое-нибудь ее значение. Такое предложение с пустым местом (переменной), которое может обращаться в истинное или ложное высказывание, называется в ы с к а-зывательной формой или предикатом.

Говоря в дальнейшем «предложение», будем иметь в виду высказывание (т. е. повествовательное предложение без пустых мест), или предикат

Например, предложения 2 + 2 = 4, 2 + 2 = 5, 3<5, 6<5 — высказывания, причем первое и третье — истинные высказывания, второе и четвертое — ложные, предложения же 2 + х = 5, или 2 + …=5, и х<5, или … <5,— предикаты, которые обращаются в истинные или ложные высказывания лишь при подстановке вместо переменной х (на пустое место) какого-нибудь ее значения. Такие предикаты используются при обучении маленьких детей в заданиях типа: «Какое число надо поставить на пустое место, чтобы то, что получится, было верно?» Естественно, что некоторым свойством может обладать бесконеч­ное множество предметов, другим — лишь конечное множество. Поэтому множества подразделяются на конечные и бесконечные (в главе V мы вернемся к этому вопросу).

Читайте также:  Какие свойства проявляет гидроксид кальция

Конечное множество может быть задано инепосредственны перечислением всех его элементов в произвольном порядке. Напри­мер, множество детей, живущих на Ленинском проспекте, может быть задано описанием с помощью характеристического свойства:

ix| х —живет на Ленинском проспекте} —

или же перечислением всех его элементов в произвольном порядке: {Лена, Саша, Витя, Ира, Коля}.

Вполне понятно, что бесконечное множество нельзя задать пе­речислением всех его элементов.

Математика в большей мере имеет дело с бесконечными множест­вами (числа, точки, фигуры и другие объекты), но основные мате­матические идеи и логические структуры могут быть смоделированы на конечных множествах. В таком случае истинность предложе­ния выражающего общее свойство элементов конечного множества (все элементы множества А обладают свойством Р) или суще­ствование элемента, обладающего определенным свойством (суще­ствует элемент множества М, обладающий свойством Р), может быть установлена непосредственной проверкой. Если же это пред­ложение получено логическим путем, то проверка подтверждает (или опровергает) правильность рассуждения, с помощью которого

оно получено.

Естественно, что в предматематическои подготовке обычно имеют дело с конечными множествами.Элементами множества могут быть самые разнообразные предметы любой природы, как конкретные (растения, животные, предметы обихода и т. д.), так и абстрактные (числа, геометри­ческие фигуры, отношения и т. д.), или изображения таких объектов. Чаще всего мы будем пользоваться множествами, элементами, кото­рых являются знакомые детям предметы или их изображения. При этом изображение птички так и будем называть птичкой, изобра­жение дерева деревом и т. п. Мы будем также пользоваться специальным дидактическим материалом.

Источник

Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством[1].

Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики. Примеры: множество жителей заданного города, множество непрерывных функций, множество решений заданного уравнения. Множество может быть пустым и непустым, упорядоченным и неупорядоченным, конечным и бесконечным, бесконечное множество может быть счётным или несчётным. Более того, как в наивной, так и в аксиоматической теориях множеств любой объект обычно считается множеством. Понятие множества позволяет практически всем разделам математики использовать общую идеологию и терминологию.

История понятия[править | править код]

Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов.

С 1872 года по 1897 год (главным образом в 1872—1884 годы) Георг Кантор опубликовал ряд работ, в которых были систематически изложены основные разделы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств, но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор. В частности определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством».
Эти объекты назвал элементами множества.
Множество объектов, обладающих свойством , обозначил .
Если некоторое множество , то назвал характеристическим свойством множества .

Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.

Так как теория множеств фактически используется как основание и язык всех современных математических теорий, в 1908 году теория множеств была аксиоматизирована независимо Бертраном Расселом и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. Впоследствии теорию множеств Кантора стало принято называть наивной теорией множеств, а вновь построенную — аксиоматической теорией множеств.

В практике, сложившейся с середины XX века множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора).
При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами.
Такие совокупности называются классами (различных порядков).

Элемент множества[править | править код]

Объекты, из которых состоит множество, называют элементами множества или точками множества.
Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если  — элемент множества , то записывают (« принадлежит »). Если не является элементом множества , то записывают (« не принадлежит »). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его:

.

Равенство двух множеств означает

Задание множества[править | править код]

Существуют два основных способа задания множеств: перечисление и описание.

Первый способ состоит в том, что задаётся и перечисляется полный список элементов, входящих в множество. Например, множество неотрицательных чётных чисел, меньших 10 можно задать в виде списка: . Данный способ удобно применять лишь к ограниченному числу конечных множеств.

Второй способ применяется, когда множество нельзя или затруднительно задать с помощью списка. В таком случае множества определяются свойствами их элементов. Множество задано, если указано условие , которому удовлетворяют все элементы, принадлежащие множеству и которому не удовлетворяют элементы, не принадлежащие множеству .

Читайте также:  Какая структура мозга обнаруживает важные эмоциогенные свойства

Обозначение

используется для задания множества ; оно означает, что множество состоит из тех и только тех элементов множества , для которых выполнено условие .

Например, график функции можно задать следующим образом:

Некоторые виды множеств и сходных объектов[править | править код]

Специальные множества[править | править код]

  • Пустое множество — множество, не содержащее ни одного элемента.
  • Одноэлементное множество — множество, состоящее из одного элемента.
  • Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время более узко как «множество, включающее все множества, участвующие в рассматриваемой задаче».

Сходные объекты[править | править код]

  • Кортеж (в частности, упорядоченная пара) — упорядоченная совокупность конечного числа именованных объектов. Записывается внутри круглых или угловых скобок, а элементы могут повторяться.
  • Мультимножество (в теории сетей Петри называется «комплект») — множество с кратными элементами.
  • Пространство — множество с некоторой дополнительной структурой.
  • Вектор — элемент линейного пространства, содержащий конечное число элементов некоторого поля в качестве координат. Порядок имеет значение, элементы могут повторяться.
  • Последовательность — функция одного натурального переменного. Представляется как бесконечный набор элементов (не обязательно различных), порядок которых имеет значение.
  • Нечёткое множество — математический объект, подобный множеству, принадлежность которому задаётся не отношением, а функцией. Иными словами, относительно элементов нечёткого множества можно говорить «в какой мере» они в него входят, а не просто, входят они в него или нет.

По иерархии[править | править код]

  • Система множеств (множество множеств) — множество, все элементы которого также являются множествами, обычно схожего происхождения (например, все они могут быть подмножествами некоторого другого множества)[2].

    • Алгебра множеств, кольцо множеств — примеры типов структур, являющихся системами множеств.
    • Булеан — множество всех подмножеств данного множества.
  • Семейство множеств — индексированный аналог системы множеств, см. семейство (математика).
  • Подмножество
  • Надмножество

Отношения между множествами[править | править код]

Два множества и могут вступать друг с другом в различные отношения.

  • включено в , если каждый элемент множества принадлежит также и множеству :
  • включает , если включено в :
  • равно , если и включены друг в друга:
  • строго включено в , если включено в , но не равно ему:
  • строго включает , если строго включено в :
  • и не пересекаются, если у них нет общих элементов:
    и не пересекаются
  • и находятся в общем положении, если существует элемент, принадлежащий исключительно множеству , элемент, принадлежащий исключительно множеству , а также элемент, принадлежащий обоим множествам:
    и находятся в общем положении

Операции над множествами[править | править код]

Бинарные операции[править | править код]

Основные бинарные операции, определяемые над множествами:

Если множества и не пересекаются, то . Их объединение обозначают также: .

Для объяснения смысла операций часто используются диаграммы Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.

Всякая система множеств, замкнутая относительно операций объединения и пересечения, образует относительно объединения и пересечения дистрибутивную решётку.

Унарные операции[править | править код]

Дополнение определяется следующим образом:

.

Операция дополнения подразумевает некоторый зафиксированный универсум (универсальное множество , которое содержит ), и сводится к разности множеств с этим универсумом:

.

Система множеств с фиксированным универсумом, замкнутая относительно операций объединения, пересечения с введённым таким образом дополнением образует булеву алгебру.

Булеан — множество всех подмножеств:

.

Обозначение происходит из свойства мощности множества всех подмножеств конечного множества:

.

Булеан порождает систему множеств с фиксированным универсумом , замкнутую относительно операций объединения и пересечения, то есть, образует булеву алгебру.

Приоритет операций[править | править код]

Последовательность выполнения операций над множествами, как и обычно, может быть задана скобками. При отсутствии скобок сначала выполняются унарные операции (дополнение), затем — пересечения и разности, которые имеют одинаковый приоритет, затем — объединения и симметрической разности[источник не указан 296 дней]. Операции одного приоритета выполняются слева направо. При этом надо иметь в виду, что в отличие от арифметических сложения и вычитания, для которых верно, что , для аналогичных операций над множествами это неверно. Например, если то но, в то же время, .

Мощность[править | править код]

Мощность множества — характеристика множества, обобщающая понятие о количестве элементов для конечного множества таким образом, чтобы множества, между которыми возможно установление биекции были равномощны. Обозначается или . Мощность пустого множества равна нулю, для конечных множеств мощность совпадает с числом элементов, для бесконечных множеств вводятся специальные кардинальные числа, соотносящиеся друг с другом по принципу включения (если , то ) и распространением свойства мощности булеана конечного множества: на случай бесконечных множеств (само обозначение мотивировано этим свойством).

Наименьшая бесконечная мощность обозначается , это мощность счётного множества. Мощность континуума, биективного булеану счётного множества обозначается или . Континуум-гипотеза — предположение о том, что между счётной мощностью и мощностью континуума нет промежуточных мощностей.

Примечания[править | править код]

Литература[править | править код]

  • К. Куратовский, А. Мостовский. Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. — М.: Мир, 1970. — 416 с.
  • Столл Р. Р. Множества. Логика. Аксиоматические теории. / Перевод с английского Ю. А. Гастева и И. Х. Шмаина под редакцией Ю. А. Шихановича. — М.: Просвещение, 1968. — 232 с.

Источник