Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома thumbnail

По каким закономерностям изменяются свойства элементов в таблице Менделеева?

Анонимный вопрос  ·  30 октября 2018

254,6 K

Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂  ·  vk.com/mendo_him

При движении по группе главной подгруппы сверху вниз⬇️

????Радиус атома увеличтвается

????Электроотрицательность уменьшается

????Окислительные свойства ослабевают

????Восстановительные свойства усиливаются

????Неметаллические ослабевают

????Металлические усиливаются

По периоду слева направо всё наоброт????

????Радиус уменьшается

????ЭО возрастает

????Окислительные свойства усиливаются

????Восстановительные ослабевают

????Неметаллические увеличиваются

????Металлические свойства ослабевают

Педагог, музыкант, начинающий путешественник и немножко психолог

В периодах (слева направо): увеличивается заряд ядра, число электронов на внешнем уровне, уменьшается радиус атомов, в связи с этим увеличивается прочность связи электронов с ядром и электроотрицательность, что в свою очередь ведет к усилению окислительных свойств (неметаличности) и ослаблению восстановительных (металличности).

В группах (сверху… Читать далее

Можете зайти на этот форум и найти нужный вам ответ!!Осень будем рады вас там видеть!♥️https://blog.pachca.com/post… Читать дальше

⦁ Как строение металлов и неметаллов обуславливает их свойства?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  ·  spbstanki.ru

Ваш вопрос имеет отношение скорее к химии. Металлы имеют немолекулярное строение и сходные физические свойства: это твердые вещества (кроме ртути), они обладают характерным металлическим блеском, не имеют запаха, хорошо проводят тепло и электрический ток, а также имеют немолекулярное строение. Неметаллы также имеют свой набор свойств, отличающихся от металлов: отсутствует металлический блеск, имеют низкую электропроводность и теплопроводность; большинство неметаллов имеет молекулярное строение (кислород, азот, хлор, фтор и т.д.); неметаллы могут существовать в трех формах: жидком (бром), твердом (сера, иод, белый фосфор) и газообразном состоянии (водород, кислород, азот, инертные газы и т.д.).

Все эти свойства обусловлены строением металлов и неметаллов:

  • Высокую электропроводность металлов обуславливают свободные электроны, перемещающиеся по кристаллической решётке под действием электрических полей. При нагревании электропроводность уменьшается;

  • Металлический блеск металлов, пластичность и другие свойства обусловлены их кристаллическим строением, в узлах кристаллической решетки расположены отдельные атомы. Они слабо удерживают валентные электроны, которые по этой причине свободно перемещаются по всему объему металла, формируя единое электронное облако и в равной степени притягиваются всеми атомами.

  • Высокая теплопроводность металлов происходит из-за наличия свободных электронов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них — следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.

  • Металлы – восстановители (отдают электроны) они вступают в химические реакции с неметаллами, образуя оксиды, гидроксиды, соли. Самыми активными являются щелочные и щелочноземельные металлы, расположенные в I и II группах таблицы Менделеева. Благородные металлы (Au, Ag, Pt) малоактивны и не взаимодействуют с кислородом и водой;

  • Неметаллические свойства связаны со способностью атомов элементов присоединять к себе электроны. Притяжение внешних электронов к ядру тем сильнее, чем меньше размеры атома и больше заряд ядра. В периоде с ростом заряда ядра от элемента к элементу радиус атома уменьшается, сильнее становится притяжение внешних электронов к ядру и неметаллические свойства усиливаются.

Почему звезды не синтезируют химические элементы тяжелее железа?

phd @ princeton astro | haykh.github.io

В любой ядерной реакции, ядро будет стремиться к состоянию с максимальной энергией связи на нуклон (протон и нейтрон). Посмотрите на эту диаграмму, она как раз показывает среднюю энергию связи ядра, поделённую на число протонов и нейтронов. Всё, что находится слева от железа, может увеличить свою энергию связи на нуклон путём увеличения числа нуклонов термоядерным синтезом. Всё, что справа — может так же увеличить энергию связи, путём уменьшения числа нуклонов — радиоактивным распадом.

Т.е. оптимальным является именно изотоп железа Fe-56, ядра тяжелее будут распадаться радиоактивным образом, а ядра легче при высокой температуре будут синтезироваться.

PS. На самом деле, самая большая энергия не у Fe-56, а у Ni-62, но они примерно одинаковые, поэтому сильно это ни на что не влияет.

Как определить степень окисления по таблице Менделеева?

Современная леди. Увлекаюсь искусством, фотографией. Имею широкий кругозор и…

Под степенью окисления в первую очередь понимают условную величину, которая не имеет физического смысла. При указании степени окисления используют велечину его электоотрицательноси, но следует помнить, что она не равняется заряду атома в молекуле. И так, существует максимальная положительная степень окисления, которая чаще всего совпадает с номером группы, в которой расположен химический элемент. Максимальная отрицательная степень окисления элемента, будет равно максимальной положительной степени окисления, минус восемь. Эти значения будут совпадать с высшей и низшей валентностью.

Читайте также:  Какие полезные свойства от пчелиной перги

Расположить электролиты в порядке уменьшения неметаллических свойств f, cl, y, at, br, почему?

Всего понемногу… Увлекаюсь Мексикой, теннисом и игрой на барабанах.

Общеизвестно, что неметаллические свойства элементов ослабевают сверху вниз и слева направо по таблице Менделеева. Поэтому в порядке уменьшения неметаллических свойств элементы нужно расставить в таком порядке: Y, F, Cl, Br, At.

Источник

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

В формулировке Дмитрия Ивановича Менделеева периодический закон звучал так: «Свойства элементов, формы и свойства образуемых ими соединений находятся в периодической зависимости от величины их атомной массы.» Периодическое изменение свойств элементов Менделеев связывал с атомной массой. Понимание периодичности изменения многих свойств позволило Дмитрию Ивановичу определить и описать свойства веществ, образованных еще не открытыми химическими элементами, предсказать природные рудные источники и даже места их залегания.

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

Более поздние исследования показали, что свойства атомаов и их соединений зависят в первую очередь от электронного строения атома. А электронное строение определяется свойствами атомного ядра. В частности, зарядом ядра атома.

Поэтому современная формулировка периодического закона звучит так:

«Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов«.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Периоды – это горизонтальные ряды элементов с одинаковым количеством заполняемых электронных уровней. Номер периода обозначает число энергетических уровней в атоме элемента. Все периоды (кроме первого) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. 

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.

В периодах слева направо возрастает число электронов на внешнем уровне.

Как следствие,

В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.

В первом периоде имеются два элемента – водород и гелий. При этом водород условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Как и щелочные металлы, водород является восстановителем. Отдавая один электрон, водород образует однозарядный катион H+. Как и галогены, водород – неметалл, образует двухатомную молекулу H2 и может проявлять окислительные свойства при взаимодействии с активными металлами:

2Na + H2  →  2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементыа с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до гадолиния Hg), а после первого переходного элемента лантана La следуют14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номерому.

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппыглавные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:

В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.

В главных подгруппах сверху вниз увеличивается устойчивость соединений элементов в низшей степени окисления.

В побочных подгруппах наоборот: сверху вниз металлические свойства ослабевают и увеличивается устойчивость соединений с высшей степенью окисления.

Читайте также:  О каких свойствах водного раствора аммиака свидетельствует его

В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все жлементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-XIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Из строения атомов и электронных оболочек вытекают следующие закономерности:

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус – понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

Мы говорим про орбитальный радиус изолированного атома .

Орбитальный радиус – это  теоретически рассчитанное расстояние от ядра до максимального скопления  наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.

Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.

Например, в ряду атомов: F – Cl – Br – I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается.

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.

Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:

Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.

Например, в ряду Li – Be – B – C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается.

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

Пример. Выберите три элемента, которые в Периодической системе находятся в одной группе, и расположите эти элементы в порядке увеличения радиуса  атома

  1) O         2) Se       3) F       4) S       5) Na

 Решение: 

В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

Ответ: 142

Пример. Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома

  1) K         2) Li       3) F       4) B       5) Na

Решение: 

В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243

Рассмотрим закономерности изменения радиусов ионов: катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Например, радиус иона Na+ меньше радиуса атома натрия Na:

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

 Радиус аниона больше радиуса соответствующего атома.

Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Например, радиус иона Cl– больше радиуса атома хлора Cl.

Изоэлектронные ионы – это  ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Например: частицы Na+ и F‒ содержат по 10 электронов. Но заряд ядра натрия +11, а у фтора только +9. Следовательно, радиус иона Na+ меньше радиуса иона F ‒.

Читайте также:  Какие свойства аммиака лежат в основе его применения

Еще одно очень важное свойство атомов – электроотрицательность (ЭО)

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.

Какое свойство элемента изменяется периодически с увеличением заряда ядра атома

По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

В главных подгруппах сверху вниз уменьшается электроотрицательность.

В периодах слева направо электроотрицательность увеличивается.

Пример.Из указанных в ряду химических элементов выберите три элемента-неметалла. Расположите выбранные элементы в порядке возрастания их электроотрицательности. Запишите в поле ответа номера выбранных элементов в нужной последовательности:

  1) Mg         2) P       3) O       4) N       5) Ti

Решение: 

Элементы-неметаллы – это фосфор Р, кислород О и азот N.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243.

Ответ: 243

Источник

Периодический закон – основа современной химии. На знании периодического закона базируются все научные направления и исследования в химии: изучение взаимопревращений веществ, получение новых материалов, теоретическое изучение строение веществ, типов химических связей и так далее.

Заряд ядра определяет число электронов в атоме, каждый последующий элемент имеет на один электрон больше, чем предыдущий. Заряд ядра определяет строение электронной оболочки атома в основном состоянии. Элементы располагаются в периодической системе элементов в порядке возрастания заряда ядер их атомов. У элементов периодически повторяются электронные конфигурации атомов и, как следствие этого, периодически повторяются химические свойства, которые определяются электронной конфигурацией атомов. Периодичность электронного строения проявляется в том, что через определенное число элементов снова повторяются s-, p- и d-элементы с одинаковым конфигурациями электронных подуровней. Периодичность присуща всей электронной оболочке атомов, а не только ее внешним слоям. Периодичность электронных структур приводит к периодическому изменению ряда химических и физических свойств элементов: атомных радиусов, энергий ионизации, сродства к электрону, электроотрицательности. Обсудим это более конкретно.

Атомные радиусы химических элементов изменяются периодически в зависимости от заряда ядра атома (или порядкового номера элемента). В периодах радиусы атомов уменьшаются от щелочного металла до галогена. Так атомный радиус атома натрия 0.186 нм, магния – 0.16 нм, хлора – 0.099 нм. Атомный радиус следующего щелочного металла, открывающего последующий период, резко увеличивается, радиус у него гораздо больше радиуса щелочного металла, стоящего над ним. Например: радиус атома натрия 0.186 нм, а атома калия 0.231 нм.

Уменьшение радиусов атомов в периодах слева направо, то есть с увеличением заряда ядра атома объясняется тем, что увеличение заряда ядра атома способствует более сильному притяжению электронов данного электронного уровня к ядру (оно действует сильнее отталкивания электронов друг от друга).

В группах с ростом заряда ядра атома (сверху вниз) радиусы атомов увеличиваются. Это объясняется тем, что каждый элемент, стоящий ниже, имеет на один электронный уровень больше, поэтому у него больше и радиус атома. Эта закономерность ярче проявляется у элементов главных подгрупп (у s- и p-элементов), чем у элементов побочных подгрупп (d-элементы).

В этих рассмотренных закономерностях есть исключения, но обсуждать их мы не будем, так как это не входит в рамки нашей программы.

Укажем еще на то, что необходимо различать радиусы свободного атома и следующие радиусы:

а) ковалентный радиус – это половина межъядерного расстояния в молекулах или кристаллах соответствующих простых веществ (т. е. веществ с ковалентным типом связи);

б) металлический радиус – это половина расстояния между центрами двух соседних атомов в кристаллической решетке металла;

в) ионные радиусы атомов рассматриваются как половина расстояния суммы радиусов катиона и аниона (следует помнить, что радиусы катионов всегда меньше атомных радиусов соответствующих элементов, а радиусы анионов – больше радиусов атомов соответствующих элементов).

Энергия ионизации и сродство к электрону это параметры, которые позволяют оценить способность атомов терять и принимать электроны.

Энергия ионизации это та минимальная энергия, которую нужно затратить для отрыва наиболее слабо связанного с ядром невозбужденного атома электрона.

При ионизации атома идет процесс:

Э + Еион = Э+ + е.

В результате процесса ионизации атом превращается в положительно заряженный ион, а один из электронов атома “уходит” из его электронной оболоч ки. Энергию ионизации выражают в килоджоулях на моль (кДж/моль) или в электрон-вольтах (эВ/ат

Источник