Какое количество углерода содержится в доэвтектоидных сталях

Цель работы:

— изучение диаграммы состояния железоуглеродистых сплавов;

— анализ превращений, происходящих в сплавах при охлаждениях и нагревах;

— определение фазового и структурного состояния сплавов в зависимости от их состава и температуры;

— установление зависимости между структурой и свойствами стали.

Под равновесным понимается такое состояние, при котором все фазовые превращения в сплаве полностью закончились в соответствии с диаграммой состояния. Это имеет место только при очень малых скоростях охлаждения (нагрева). Равновесное состояние соответст­вует минимальному значению свободной энергии и не подвергается са­мопроизвольному изменению во времени. Поэтому оно называется ста­бильным.

Превращения, протекающие в сталях в равновесном состоянии, описываются диаграммой «железо-цементит», представленной на рисунке 8.1.

Рисунок 8.1 – Диаграмма «железо-цементит»

В железоуглеродистых сплавах могут присутствовать следующие твердые фазы: феррит, аустенит, цементит.

Феррит – твердый раствор внедрения углерода в a-железе, имеющем объемноцентрированную кубическую решетку. На диаграмме «железо-цементит» существуют две области феррита – высокотемпературная область АNН и низкотемпературная область GPQ. Максимальная растворимость в высокотемпературной области составляет 0,10 % – точка Н, в низкотемпературной области 0,02 % – точка Р. Содержание углерода при комнатной температуре – 0,01 %. Феррит мягок и пластичен (sВ = 200 – 300 МПа, d = 20–50 %, 80 – 100 НВ).

Аустенит – твердый раствор внедрения углерода в g-железе, имеющем гранецентрированную кубическую решетку. На диаграмме «железо-цементит» аустенит занимает область NJESG. Максимальная растворимость углерода в аустените 2,14 % – точка Е. По механическим свойствам аустенит близок к ферриту. Горячую обработку давлением проводят в области существования аустенита (однофазный твердый раствор характеризуется высокой пластичностью).

Цементит – химическое соединение железа с углеродом – карбид железа, химическая формула которого Fe3С. Содержание углерода в цементите равна 6,67 %. Цементит обладает высокой твердостью (» 800 HV) и хрупкостью. Он имеет сложную ромбическую решетку. Она состоит из ряда октаэдров, оси которых расположены под некоторыми углами друг к другу.

Кристаллизация сплавов, содержание углерода в которых меньше 0,5 % (точка В), начинается с выделения из жидкого раствора кристаллов феррита. При содержании углерода больше 0,5 % стали кристаллизуются с выделением аустенита.

Сплавы, содержащие углерод от 0,1 % (точка Н) до 0,5 % (точка В), претерпевают при температуре 1499 oC (линия НJB) перитектическое превращение, заключающееся в том, что жидкий раствор, имеющий при этой температуре концентрацию, соответствующую точке В (0,5 % С), взаимодействуя с выделившимися из него кристаллами феррита концентрации точки Н (0,1 % С), образует новую фазу – кристаллы аустенита концентрации точки J (0,16 % С):

ФН + ЖВ ® АJ.

При дальнейшем снижении температуры в сплавах с содержанием углерода от 0,1 до 0,16 % феррит, оставшийся после перитектического превращения, перекристаллизовывается в аустенит. В сталях с содержанием углерода больше 0,16 % оставшаяся жидкость затвердевает с образованием аустенита. Ниже линий NJ и JE сплавы имеют однородную аустенитную струк­туру.

Все сплавы с содержанием углерода более 0,02 % (точка Р) при температуре 727 oС (линия PSK) претерпевают эвтектоидное превращение. При эвтектоидном превращении аустенит, имеющий при этой температуре концентрацию углерода, соответствующую точке S (0,8 % С), распадается с образованием эвтектоидной смеси – перлита (феррита состава точки Р (0,02 % С) и цементита):

AS ® ФР + Ц.

Эвтектоидная смесь феррита и цементита, образующаяся в ре­зультате эвтектоидного распада аустенита называется перлитом.

В сплавах с содержанием углерода менее 0,8 % (точка S) эвтек­тоидному превращению предшествует выделение из аустенита феррита, которое протекает в интервале температур, ограниченных линиями GS и РS. При этом в оставшемся аустените концентрация углерода изменяется по линии GS. В сплавах с содержанием углерода более 0,8 % (точка S) эвтектоидному превращению предшествует выделение из аустенита цементита. Выделение цементита протекает в интервале температур, ограниченных линиями ES и SK. В этом случае концентрация углерода в оставшемся аустените изменяется по линии ES.

Железоуглеродистые сплавы в зависимости от содержания углерода делятся на три группы: техническое железо, стали, чугуны.

Техническое железо – это сплавы с содержанием углерода менее 0,02 % (точка Р). Как следует из диаграммы «железо-цементит», тех­ническое железо имеет структуру феррита или феррита и цементита третичного, который в виде отдельных мелких включений располагается по границам зерен феррита (рисунок 8.2, а). Третичный цементит выделяется из феррита в результате снижения растворимости углерода при уменьшении температуры от эвтектоидной (727 оС) до комнатной. Предельная растворимость углерода в феррите ограничивается линией GPQ. По свойствам техническое железо подобно ферриту.

Читайте также:  В каком объеме воды содержится 10 18 молекул вода

Стали – это сплавы с содержанием углерода от 0,02 % (точка Р) до 2,14 % (точка Е). В структуре стали по мере увеличения содержания углерода возрастает доля цементита и соответственно уменьшается доля феррита. Это приводит к повышению твердости и прочности стали и снижению ее пластичности, изменению физических и технологических свойств. В зависимости от содержания углерода стали по своей структуре делятся на доэвтектоидные, эвтектоидные и заэвтектоидные.

Доэвтектоидные стали содержат от 0,02 % углерода (точка Р) до 0,8 % углерода (точка S). Она имеет структуру феррита (светлые зерна) и перлита (темные зерна) (рисунок 8.2, б, в). Количественное соотношение между перлитом и ферритом зависит от содержания углерода. С увеличением содержания углерода прямо пропорционально увеличивается содержание перлита. При концентрации углерода в стали 0,8 % количество перлита равно 100 %. Зная площадь, занимаемую перлитом, с достаточной для практики точностью можно определить содержание углерода в углеродистой стали:

С = ,

где А – площадь, занимаемая перлитом.

Эвтектоидная сталь содержит 0,8 % углерода (точка S) и состоит из перлита (рисунок 8.2, г).

Рисунок 8.2 – Микроструктура технического железа (а), доэвтектоидных сталей с содержанием углерода 0,20 % (б) и 0,45 % (в), эвтектоидной (г) и заэвтектоидной (д) сталей

Заэвтектоидная сталь содержит от 0,8 % углерода (точка S) до 2,14 % углерода (точка Е). Заэвтектоидная сталь состоит из перлита и цементита (рисунок 8.2, д).

Таким образом, структура, а следовательно, и свойства стали определяются количеством углерода в ней. Доэвтектоидные стали, содержащие до 0,8 % углерода, являются конструкционными, предназначенными для изготовления деталей машин (машиностроительные стали), конструкций и сооружений (строительные стали). В значительной мере свойства углеродистых сталей, а, следовательно, и область их применения зависят от содержания в них вредных примесей серы и фосфора. Чем меньше их в стали, тем выше ее качество.

Стали обыкновенного качества, наиболее дешевые, являются конструкционными сталями общего назначения и содержат до 0,07 % фосфора, 0,06 % серы, 0,06–0,49 % углерода. По гарантируемым свойствам они подразделяются на три группы – А, Б, В. В сталях группы А – гарантируются механические свойства, группы Б – химический состав; в сталях группы В гарантируются механические свойства и химический состав.

Сталь группы А маркируется буквами Ст и номером 0, 1, 2, … 6, например, Ст1. В сталях группы Б перед буквами Ст ставится буква Б, например, БСт2. В сталях группы В перед буквами Ст ставится буква В, например, ВСт3. С увеличением условного номера повышается содержание углерода в стали, что приводит к увеличению прочностных свойств, к снижению пластичности и свариваемости.

Стали группы А применяются для изготовления рядового проката (швеллеров, уголков, листов, прутков, труб и др.) используемого для клепанных и болтовых конструкций, а также для малонагруженных деталей машин (валов, осей, зубчатых колес, болтов и т. д.) не подвергаемых нагреву в процессе обработки. Стали группы Б применяются для изготовления изделий, подвергаемых нагреву (горячей обработке давлением, сварке, термической обработке). Стали группы В применяются для изготовления сварных конструкций, подвергаемых расчетам на прочность.

В конце марки стали ставятся буквы «кп», «пс», «сп». Буквы «кп» показывают, что сталь кипящая, «пс» – полуспокойная, «сп» – спокойная.

Качественная конструкционная сталь по сравнению со сталью об­щего назначения содержит вдвое меньше серы и фосфора и отличается более высокими механическими свойствами. Она маркируется цифрами, например, 08, 10, … 80, показывающими содержание углерода в сотых долях процента.

Низкоуглеродистые стали, содержащие углерода до 0,25 %, обладают невысокой прочностью и высокой пластичностью и применяются для изготовления изделий листовой холодной штамповкой (05 кп…10), а также для деталей, упрочняемых цементацией, и для различных сварных соединений (Сталь 15, Сталь 20). Кроме того, из последних сталей изготавливают болты, шпильки, гайки, валики неответственного назначения и т. п.

Читайте также:  Какие основные элементы содержатся в вариационном ряду мти ответы

Среднеуглеродистые стали марок 30-50 предназначаются для ответственных деталей высокой прочности с вязкой сердцевиной (зубчатые колеса, шатуны, коленчатые валы, распределительные валы, винты, оси, втулки, рычаги и др.). Как правило, детали из этих сталей подвергаются улучшению (вид термической обработки).

Высокоуглеродистые стали 55-85 применяются для пружин, рессор, а также деталей высокой прочности: прокатных валков (сталь 60), крановых колес (сталь 75), дисков муфт сцепления (сталь 85) и др. Детали из этих сталей подвергаются закалке и отпуску (виды термической обработки).

Для изготовления различных инструментов применяется углеродистая инструментальная сталь, содержащая углерода от 0,7 до 1,3 %. Она имеет пониженное содержание вредных примесей: фосфора – до 0,035 % и серы – до 0,03 % (качественная сталь) или фосфора – до 0,03 % и серы – до 0,02 % (высококачественная). Эта сталь производится следующих марок: У7 — У13 (качественная) или У7А — У13А (высококачественная). Здесь «У» означает «углеродистая инструментальная сталь», число после «У» — содержание углерода в десятых доля процента (например, У12 содержит углерода 1,2 %). Буква «А» в конце марки означает – высококачественная сталь.

Стали марок У7 и У8 вязче других, так как не имеют в структуре цементита, и они идут на изготовление ударных инструментов – молотков, зубил, топоров, кернеров, стамесок, долот, штампов и т. д.

Стали У10 и У11 имеют несколько меньшую вязкость и немного большую твердость (т.к. в их структуре содержится небольшой количество цементита) и используются для изготовления резцов, сверл, метчиков, лерок.

Стали У12 и У13 обладают низкой вязкостью и высокой твердостью и используются для изготовления инструмента, не испытывающего ударных нагрузок (напильников, бритв, рашпилей и т. п.).

Контрольные вопросы

1. Описать превращения, протекающие в сталях при нагреве или охлаждении, указать их температуры.

2. Дать определение фазам, присутствующим в сталях и указать содержание углерода в них.

3. Дать классификацию углеродистых сталей по качеству, содержанию углерода и назначению.

4. Изучить маркировку сталей и указать области применения перечисленных сталей:

Ст2, БСт3, ВСт4, Ст6;

08 кп, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80;

У7, У8, У10А, У11, У12, У13.

Источник

Стали, содержащие от 0,025 до 0,8% углерода, называются доэвтектоидными.

Структура этих сталей состоит из феррита (светлый фон) и перлита (темные зерна). Количество перлита увеличивается, а феррита уменьшается пропорционально увеличению содержания углерода (рис.5) в соответствие с диаграммой состояния (рис.1).

Рис.5. Микроструктура доэвтектоидных сталей:

а – сталь 20, б – сталь 45, в – сталь 60

Поэтому, считая, что феррит углерод практически не растворяет, а наличие в структуре 100% перлита соответствует 0,81% С, можно найти содержание углерода в любой доэвтэктоидной стали, определив с помощью микроскопа количественное соотношениемежду структурными составляющими и решая затем простую пропорцию.

0,81% С — 100% перлита

X % С А % перлита,

где А — количество перлита встали, определенное визуально с помощью микроскопа.

Отсюда

При содержании 0,8% С сталь называется эвтектоидной и состоит из одного перлита.

Твердость и предел прочности эвтектоидной стали выше, чем доэвтектидной, а пластичность ниже.

Заэвтектоидные стали

Стали с содержанием углерода от 0,81 до 2% называются заэвтектоидными, ихструктурасостоит из перлита и вторичного цементита.

Цементит

Цементит — самая хрупкая и твердая (НВ>800) структурная составляющая. Пластичность цементита ничтожно мала и практически равна нулю, что, вероятно, является следствием сложного строения его кристаллической решетки. Кристаллическая структура цементита очень сложна. Есть много различных способов ее изображения, один из наиболее удачных показан на рис. 6.

Цементитная сетка в структуре стали снижает ее пластичность, а твердость — увеличивает. Поэтому с возрастанием количества вторичного цементита пропорционально увеличению концентрации в ней углерода твердость ее повышается, а пластичность падает.

Рис. 6. Кристаллическая структура цементита

Цементит содержит 6,67% углерода, является самой хрупкой и твердой (НВ до 800) структурной составляющей железоуглеродистых сплавов.

В заэвтектоидной стали вторичный цементит обычно расположен в виде светлой сетки или светлых зерен (цепочки) по границам перлитных зерен или в виде игл (рис.7).

Читайте также:  В каком нормативном правовом акте содержится перечень критериев по которым

Рис.7. Микроструктура заэвтектоидной стали У12 — 1,2 % С

(перлит + цементит вторичный)

а – цементит вторичный зернистый; б – в виде сетки по границам зерен

В сталях, содержащих углерод несколько меньше 0,81%, в виде сетки по границам зерен перлита может также выделиться феррит. При обычном травлении 4%-ным раствором азотной кислоты эта сетка также получается светлой. Для выяснения, является эта сетка ферритной или цементитной, микрошлиф подвергают травлению пикратом натрия.

Если сетка после травления осталась светлой, то это феррит и, следовательно, сталь является доэвтектоидной; если сетка потемнеет, то это цементит, и сталь является заэвтектоидной.

Вторичный цементит в заэвтектоидиой стали занимает незначительную по величине площадь, определить которую на глаз затруднительно. Поэтому методом, которым определяют содержание углерода в доэвтектоидных сталях, для заэвтектоидных — не пользуются.

Выделение вторичного цементита по границам зерен аустенита и цементита перлита в виде пластинок нежелательно, так как такая структура обладает повышенной хрупкостью, плохо обрабатывается резанием и после окончательной термической обработки готовые детали (инструмент) будут иметь пониженные механические свойства, главным образом малую пластичность и ударную вязкость. Поэтому стремятся получать цементит в виде мелких зерен округлой формы (шарики). Структура зернистого перлита является исходной структурой для инструментальных сталей (рис.4).

Таким образом, свойства стали после медленного охлаждения определяются свойствами ее структурных составляющих и их количественным соотношением. Структура же стали состоит из перлита с избыточным или ферритом, или цементитом, в зависимости от количества в ней углерода. Следовательно, именно содержание углерода в стали определяет ее механические и технологические свойства — прочность, твердость, пластичность, вязкость.

Количество цементита в структуре стали возрастает прямо пропорционально содержанию углерода, а как указывалось выше, твердость цементита НВ>800 (8000-8500 МПа) на порядок больше твердости феррита НВ 45-80 (450-800 МПа). Кроме того, частицы цементита повышают сопротивление движению дислокаций, т.е. повышают сопротивление деформации, уменьшают пластичность и вязкость. Вследствие этого с увеличением в стали содержания углерода до 1,0% возрастают твердость, прочность, предел текучести и понижаются показатели пластичности (относительное удлинение и сужение) и ударная вязкость (рис.6).

При содержании углерода свыше 1,0-1,1% твердость стали в отожженном состоянии возрастает, а прочность уменьшается из-за наличия вторичного цементита, образующего сплошную сетку и вызывающего хрупкое преждевременное разрушение.

С увеличением содержания углерода меняется структура стали, увеличивается количество цементита и уменьшается количество феррита. Это приводит соответственно к изменению свойств стали.

Pиc. 8. Влияние углерода на механические свойства стали

Чем больше углерода в стали, тем выше твердость и прочность, но ниже пластичность (рис.8).

Механические свойства стали зависят также от формы и размеров феррито-цементитной смеси.

Чем дисперсней (тоньше) частички феррито-цементитной смеси, тем выше твердость и прочность стали.

Зернистая форма цементита по сравнению с пластинчатой при одинаковой твердости обладает более высокой пластичностью и ударной вязкостью.

С повышением содержания углерода в стали:

— снижается свариваемость, углерод способствует также образованию трещин и пор в процессе сварки в сварном шве,

— до некоторого содержания углерода (0,3-0,5%) улучшается обрабатываемость резанием.

Далее с повышением содержания углерода:

— ввиду высокой твердости стали, обрабатываемость резанием ухудшается;

— повышается порог хладноломкости стали;

— усиливается чувствительность стали к дисперсному старению и к старению после холодной пластической деформации;

— понижается устойчивость стали против коррозии в атмосферных условиях, в речной и морской воде.

Механические свойства конструкционной качественной углеродистой стали в нормализованном состоянии приведены в табл. 1.

Таблица 1

Механические свойства конструкционной качественной углеродистой стали в нормализованном состоянии (не менее)

Марка
стали
Временное
сопротивление разрыву
Предел
текучести
Относительное удлинение Относительное сужение Ударная
вязкость,
МПа % Нм/см2
08кп
10кп
15кп
20кп
50

Дата добавления: 2016-11-02; просмотров: 9209 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник