Какое количество информации в битах содержится в 1 терабайте

Полную версию статьи со всеми дополнительными видео уроками смотрите в источнике: https://hetmanrecovery.com/ru/recovery_news/how-much-bytes-in-kilobyte-megabyte-gigabyte-terabyte-and-petabyte.htm

Детальная статья об основных единицах измерения информации и сколько байт, мегабайт, гигабайт, петабайт они вмещают в себя. С развитием компьютерных технологий, объем окружающей нас информации необычайно возрос. Мы получаем ее отовсюду и используем повсеместно. Основными источниками информации являются персональные компьютеры и всемирная информационная сеть «Интернет». Для обработки, хранения, обмена и управления информацией ее необходимо представить в цифровом виде. Этот метод подачи информации значительно упрощает процесс ее использования, повышает мобильность информации и расширяет возможные способы ее хранения.

Единицы измерения информации

Но, как и любой исчисляемый вид, информация должна иметь свою собственную единицу измерения, которая будет принята всеми производителями и понятна каждому пользователю. Единица измерения должна в полной мере отображать количественный объем информации, позволяя ее упорядочить и подобрать нужное хранилище.

Вам, несомненно, приходилось слышать термины: гигабайты, терабайты или петабайты, на которые вы раньше не обращали особого внимания. Но что именно они подразумевают, применительно к объему реального хранилища? Давайте более подробно остановимся и рассмотрим возможные размеры емкостей хранилищ.

Такие слова, как байт, мегабайт, гигабайт, петабайт и т.д., относятся к емкостному количеству цифрового хранилища. И они иногда путаются с такими созвучными терминами, как мегабит и гигабит. Полезно знать, что означают эти термины (и как они соотносятся друг с другом) при сравнении размеров хранилища на жестких дисках, планшетах и устройствах флэш-памяти. А также полезно знать основные характеристики при сравнении скорости передачи данных, если вы выполняете Интернет-соединение или приобретаете сетевое оборудование.

Биты, Байты и Килобайты

Во-первых, давайте разберем цифровые единицы измерения начального уровня, являющиеся основой для цифрового хранения информации.

Как вам известно, вся цифровая информация хранится на персональных компьютерах и передается через цифровые сети в виде двоичного кода, с использованием символов «0» и «1». Наименьшая единица измерения информации называется «бит» («bit»), соответствующая одной из цифр двоичного кода («0» или «1»). Когда мы ссылаемся на единицу измерения бит, особенно как часть более крупного слова, мы используем для обозначения строчную букву «b» в нижнем регистре. Бит, как и все последующие производные единицы, применяются совместно с приставками, используемыми для формирования кратных единиц. Например, килобит – одна тысяча бит, или мегабит – одна тысяча килобит.

Следующим в линейке единиц измерения цифровой информации выступает байт (международное обозначение «byte», «B») – совокупная единица хранения и обработки цифровой информации, состоящая из восьми бит, и используемая для одномоментного сохранения одного символа текста. Для обозначения байта, как форма сокращения, в основном используется прописная буква «Б» (в англоязычном варианте «B»). Например, для хранения обычного среднего слова требуется около 10Б.

Применяя кратные приставки для образования производных единиц, получим, следующую за «байтом», единицу измерения цифровой информации – «килобайт» («КБ»), что эквивалентно «1024 байтам» данных (или «8192 битам»). Мы сокращаем название «килобайты» до обозначения «КБ», поэтому, например, для хранения одной страницы обычного текста ориентировочно потребуется около «10 КБ».

Теперь, получив начальное представление о базовых понятиях и значениях единиц хранения цифровой информации, мы можем перейти к более объемным понятиям, с которыми вы обязательно столкнетесь при покупке различных компьютерных устройств.

Мегабайты («МБ»)

Одна из самых наименьших единиц измерения, применяемая для хранения информации, на сегодняшний день, называется мегабайт («МБ»), включающая в себя «1024 Кбайт». В конце девяностых годов прошлого столетия в «МБ» измерялись обычные потребительские товары, например, компьютерные жесткие диски. Вот несколько примеров того, сколько вы можете хранить в диапазоне понятия мегабайт («МБ»):

«1 МБ» = Около четырехсот страниц книги.

«5 МБ» = Обычная четырехминутная «mp3» песня.

«650 МБ» = Один компакт-диск «CD-ROM» с семидесятиминутной звуковой записью.

Примечание: В этом и в следующих разделах вы найдете часто повторяющееся значение «1024». Как правило, после этапа килобайта, каждое последующее значение единицы измерения возрастает в арифметической прогрессии и кратно «1024» по сравнению с предыдущим значением. Например, «1024 байт» – один килобайт, «1024 килобайт» – один мегабайт, и так далее.

Гигабайты («ГБ»)

Итак, следуя описанным выше принципам распределения единиц измерения информации, в одном гигабайте («ГБ») присутствует «1024 мегабайт («МБ»)». Гигабайты (в международной версии «GB») по-прежнему очень распространены, когда речь заходит о потребительских уровнях устройств для хранения данных. Хотя емкость большинства обычных внутренних жестких дисков («HDD») измеряется в терабайтах, отдельные виды устройств, такие как «USB-накопители» и многие твердотельные диски («SSD»), по-прежнему измеряются в гигабайтах.

Вот несколько реальных примеров, какой объем информации вы сможете сохранить, используя за основу значение единицы измерения гигабайт («ГБ»):

«1 ГБ» = Около одной тысячи книг, в зависимости от вида формата сохранения книги.

«4,7 ГБ» = Емкость одного оптического диска «DVD-ROM».

«7 ГБ» = Такое количество данных в час вы используете при потоковой передаче «Netflix Ultra HD видео».

Читайте также:  В каком ряду содержится лишний фразеологизм во весь дух что есть мочи сломя голову

Терабайты («ТБ»)

Основываясь на вышеописанной закономерности, верно утверждение, что в одном терабайте («ТБ») находится «1024 гигабайт («ГБ»)». В настоящее время терабайты являются наиболее распространенной единицей измерения объема хранения цифровой информации, особенно, когда речь идет о стандартных размерах жестких дисков («HDD»).

Некоторые примеры возможного массива информации, применительно к значению единицы измерения терабайт, в реальном мире:

«1 ТБ» = Двести тысяч пятиминутных обычных стандартных песен; триста десять тысяч снимков и изображений; или пятьсот часов фильмов.

«10 ТБ» = Количество данных, полученных космическим телескопом «Хаббл» («Hubble Space Telescope») за год.

«24 ТБ» = Количество видеоданных, загруженных на видеохостинг «YouTube» за день в 2016 году.

Петабайты («ПБ»)

Проводя линию, по аналогии с ранее описанными единицами измерения объема цифровых данных, в одном петабайте («ПБ») находится «1024» терабайт («ТБ») (или около миллиона гигабайт «ГБ»). Если тенденции развития компьютерных технологий и разработки новых современных материалов продолжатся, то единицы измерения объема цифровой информации петабайты, скорее всего, заменят собой терабайты, в качестве стандартного значения для хранения данных на уровне потребителя в будущем.

Реальные примеры возможного объема хранения цифровых данных в стандарте петабайты («ПБ»):

«1 ПБ» = Пятьсот миллиардов страниц стандартного текста (или семьсот сорок пять миллионов гибких дисков «floppy disks»).

«1,5 ПБ» = Десять миллиардов фотографий и изображений в социальной сети «Facebook».

«20 ПБ» = Совокупный объем данных, обрабатываемых «Google» ежедневно в 2008 году.

Эксабайты («ЭБ»)

И значение единицы измерения цифрового объема информации из ближайшего будущего – это эксабайт, который, как логично утверждать, состоит из «1024 петабайтов». Мировые технические гиганты, такие как «Amazon», «Google» и «Facebook» (которые обрабатывают немыслимые объемы данных), как правило, единственные, кто беспокоится о подобном виде хранилища прямо сейчас. На потребительском уровне, некоторые (но не все) файловые системы, используемые операционными системами в настоящее время, имеют теоретический предел где-то в эксабайтах.

Реальные примеры хранения цифрового массива информации в эксабайтах («ЭБ»):

«1 ЭБ» = Одиннадцать миллионов видео в стандарте высокого разрешения «4К».

«5 ЭБ» = Включает все слова, произнесенные человечеством.

«15 ЭБ» = Общие расчетные данные, проведенные «Google».

Конечно, этот список можно продолжать. Следующие три возможных значения в списке единиц измерения объема цифровой информации (для тех, кому это интересно) – это зеттабайт, йоттабайт и бронтобайт. Но, честно говоря, используя эксабайты, вы получите астрономические возможности для хранения разнообразной информации, которые сейчас, практически, не имеют реального применения.

Теперь, зная основные единицы измерения цифровой информации и возможный объем хранимых данных для каждой из них, вы легко сможете определиться, в многообразии устройств для хранения, и выбрать наиболее подходящее для вас.

Полную версию статьи со всеми дополнительными видео уроками смотрите в источнике: https://hetmanrecovery.com/ru/recovery_news/how-much-bytes-in-kilobyte-megabyte-gigabyte-terabyte-and-petabyte.htm

Источник

Единицы измерения информации

Для информации существуют свои единицы измерения информации.
Если рассматривать сообщения информации как последовательность знаков,
то их можно представлять битами, а измерять в байтах, килобайтах,
мегабайтах, гигабайтах, терабайтах и петабайтах.

Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.

Бит

Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.

1бит – это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Байт

Байт – основная единица измерения количества информации.

Байтом называется последовательность из 8 битов.

Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.

Производные единицы измерения количества информации

1 байт=8 битов

1 килобайт (Кб)=1024 байта =210 байтов

1 мегабайт (Мб)=1024 килобайта =210 килобайтов=220 байтов

1 гигабайт (Гб)=1024 мегабайта =210 мегабайтов=230 байтов

1 терабайт (Гб)=1024 гигабайта =210 гигабайтов=240 байтов

Запомните, приставка КИЛО в информатике – это не 1000, а 1024, то есть 210 .

Методы измерения количества информации

Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Алфавитный подход к измерению количества информации

При этом подходе отвлекаются от содержания (смысла) информации и
рассматривают ее как последовательность знаков определенной знаковой
системы. Набор символов языка, т.е. его алфавит можно рассматривать как
различные возможные события. Тогда, если считать, что появление символов
в сообщении равновероятно, по формуле Хартли можно рассчитать, какое
количество информации несет в себе каждый символ:

Вероятностный подход к измерению количества информации

Этот подход применяют, когда возможные события имеют различные
вероятности реализации. В этом случае количество информации определяют
по формуле Шеннона:

.

, где

I – количество информации,

N – количество возможных событий,

Pi – вероятность i-го события.

Задача 1.

Шар находится в одной из четырех коробок. Сколько бит информации несет сообщение о том, в какой именно коробке находится шар.

Имеется 4 равновероятных события (N=4).

По формуле Хартли имеем: 4=2i. Так как 22=2i, то i=2. Значит, это сообщение содержит 2 бита информации.

Задача 2.

Чему равен информационный объем одного символа русского языка?

В русском языке 32 буквы (буква ё обычно не используется), то есть количество событий будет равно 32. Найдем информационный объем одного символа. I=log2 N=log2 32=5 битов (25=32).

Читайте также:  В каком из высказываний содержится информация о режиме реки амур берега

Примечание. Если невозможно найти целую степень числа, то округление производится в большую сторону.

Задача 3.

Чему равен информационный объем одного символа английского языка?

Задача 4.

Световое табло состоит из лампочек, каждая из которых может
находиться в одном из двух состояний (“включено” или “выключено”). Какое
наименьшее количество лампочек должно находиться на табло, чтобы с его
помощью можно было передать 50 различных сигналов?

С помощью N лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2N сигналов.

25< 50 <26, поэтому пяти лампочек недостаточно, а шести хватит. Значит, нужно 6 лампочек.

Задача 5.

Метеостанция ведет наблюдения за влажностью воздуха.
Результатом одного измерения является целое число от 0 до 100, которое
записывается при помощи минимально возможного количества битов. Станция
сделала 80 измерений. Определите информационный объем результатов
наблюдений.

В данном случае алфавитом является множество чисел от 0 до 100, всего
101 значение. Поэтому информационный объем результатов одного измерения
I=log2101. Но это значение не
будет целочисленным, поэтому заменим число 101 ближайшей к нему степенью
двойки, большей, чем 101. это число 128=27.  Принимаем для одного измерения I=log2128=7 битов. Для 80 измерений общий информационный объем равен 80*7 = 560 битов = 70 байтов.

Задача 6.

Определите количество информации, которое будет получено
после подбрасывания несимметричной 4-гранной пирамидки, если делают один
бросок.

Пусть при бросании 4-гранной несимметричной пирамидки вероятности отдельных событий будут равны: p1=1/2, p2=1/4, p3=1/8, p4=1/8.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

I = -[1/2 * log2(1/2) + 1/4 * log2(1/4) + 1/8 * log(1/8) + 1/8 * log(1/8)] = 14/8 битов = 1,75 бита.

Задача 7.

В книге 100 страниц; на каждой странице — 20 строк, в каждой
строке — 50 символов. Определите объем информации, содержащийся в книге.

Задача 8.

Оцените информационный объем следующего предложения:

Тяжело в ученье – легко в бою!

Так как каждый символ кодируется одним байтом, нам только нужно
подсчитать количество символов, но при этом не забываем считать знаки
препинания и пробелы. Всего получаем 30 символов. А это означает, что
информационный объем данного сообщения составляет 30 байтов или 30 * 8 = 240 битов.

Источник

Эта статья о единице измерения информации; другие значения: бит (значения).

Один бит информации равный 0 (нулю)
лампа выключена

Один бит информации равный 1 (единице)
лампа включена

Бит (русское обозначение: бит; международное: bit; от англ. binary digit — двоичное число; также игра слов: англ. bit — кусочек, частица) — единица измерения количества информации. 1 бит информации — символ или сигнал, который может принимать два значения: включено или выключено, да или нет, высокий или низкий, заряженный или незаряженный; в двоичной системе исчисления это 1 (единица) или 0 (ноль).

В Российской Федерации обозначения бита, а также правила его применения и написания установлены «Положением о единицах величин, допускаемых к применению». В соответствии с данным положением бит относится к числу внесистемных единиц величин с областью применения «информационные технологии, связь» и неограниченным сроком действия[1]. Ранее обозначения бита устанавливались также в ГОСТ 8.417-2002[2]. Для образования кратных единиц применяется с приставками СИ и с двоичными приставками.

История[править | править код]

  • В 1703 году в работе «Объяснение двоичной арифметики»[3]Лейбниц пишет, что двоичная система счисления была описана китайским королём (императором) и философом по имени Фу Си, который жил более, чем за 4000 лет до Лейбница. Краткого современного англосаксонского[прояснить] названия китайский Liangyi (инь-ян («0»-«1»), китайский двоичный разряд, китайский бит) в то время пока ещё не имел. Китайский двубит — «сы-сян», образующий четыре диграммы, и китайский трибит — «ба-гуа», образующий восемь преднебесных и посленебесных триграмм, в современной англосаксонской[прояснить] терминологии собственных названий до сих пор не имеют.
  • В 1948 году Клод Шеннон впервые использовал слово «bit» для обозначения наименьшей единицы количества информации в статье «Математическая теория связи». Происхождение этого слова он приписывал Джону Тьюки, использовавшему сокращение «bit» вместо слов «binary digit» в заметке лаборатории Белла от 9 января 1947 года.

Определения и свойства[править | править код]

Для трёх состояний светофора необходимо 2 бита информации.
00 — красный,
01 — жёлтый,
10 — зелёный

В зависимости от области применения (математика, электроника, цифровая техника, вычислительная техника, теория информации и др.), бит может определяться следующими способами:

1. В математике:

1.1. Бит — это один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: «да» или «нет», «1» или «0», «включено» или «выключено», и т. п.

1.2. Соответствует одному числовому разряду в двоичной системе счисления, принимающему значение «0» или «1» («ложь» или «истина»)[4].

2. В электронике, в цифровой технике и в вычислительной технике:

2.1. Одному биту (одному двоичному разряду) соответствует один двоичный триггер (триггер, имеющий два взаимоисключающих возможных устойчивых состояния) или один разряд двоичной памяти.

Читайте также:  В каких продуктах содержится витамин холин

Для перехода от количества возможных состояний (возможных значений) к количеству бит можно воспользоваться формулой

[возможных состояний] [битов].

Следовательно, для одного двоичного разряда (триггера)

[бит] [возможных состояний].

Для перехода от количества битов к количеству возможных состояний (возможных значений) можно воспользоваться формулой

[возможных состояний][битов].

2.2. Формула Хартли

где

 — количество информации, бит;
 — возможное количество различных сообщений (количество возможных состояний n-разрядного регистра), шт;
 — количество букв в алфавите (количество возможных состояний одного разряда (триггера) регистра, в двоичной системе равно 2 («0» и «1»)), шт;
 — количество букв в сообщении (количество разрядов (триггеров) в регистре), шт.

Применяется для измерения объёмов запоминающих устройств и объёмов цифровых данных.

3. В теории информации:

3.1. Бит — базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода; см. информационная энтропия. Это тождественно количеству информации в ответе на вопрос, допускающий ответ «да» или «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос).

3.2. Один бит равен количеству информации, получаемой в результате осуществления одного из двух равновероятных событий[5].

3.3. Бит — двоичный логарифм вероятности равновероятных событий или сумма произведений вероятности на двоичный логарифм вероятности при равновероятных событиях; см. информационная энтропия.

Применяется для измерения информационной энтропии. Отличается от бита для измерения объёмов запоминающих устройств и объёмов цифровых данных, так как большой по объёму массив данных может иметь очень малую информационную энтропию, то есть энтропийно может быть почти пустым.

Физические реализации[править | править код]

В цифровой технике бит (один двоичный разряд) реализуется триггером или одним двоичным разрядом памяти.

Возможны две физические (в частности электронные) реализации бита (одного двоичного разряда):

  1. однофазный («однопроводный») бит (двоичный разряд). Используется один выход двоичного триггера. Нулевой уровень обозначает либо сигнал логического «0», либо неисправность схемы. Высокий уровень обозначает либо сигнал логической «1», либо исправность схемы. Дешевле двухфазной реализации, но менее надёжен;
  2. двухфазный (парафазный, «двухпроводный») бит (двоичный разряд). Используются оба выхода двоичного триггера. При исправной схеме один из двух уровней высокий, другой — низкий. Неисправность схемы опознаётся либо высоким уровнем на обоих проводах (на обеих фазах), либо низким уровнем на обоих проводах (на обеих фазах). Дороже однофазной реализации, но более надёжен.

В вычислительной технике и сетях передачи данных значения «0» и «1» обычно передаются различными уровнями либо напряжения, либо тока. Например, в микросхемах на основе транзисторно-транзисторной логики значение «0» представляется напряжением в диапазоне от +0 до +0,8 В, а значение «1» — напряжением в диапазоне от +2,4 до +5,0 В.

Обозначения[править | править код]

В вычислительной технике, особенно в документации и стандартах, слово «бит» часто применяется в значении «двоичный разряд». Например: старший бит — старший двоичный разряд байта или слова.

Использование прописной буквы «Б» для обозначения байта соответствует требованиям ГОСТ и позволяет избежать путаницы между сокращениями от «байт» и «бит». Однако, следует учитывать, что в стандарте нет сокращения для «бит», поэтому использование записи «Гб» как синонима для «Гбит» неверно.

В международном стандарте МЭК (IEC) 60027-2 2005 года[6] для применения в электротехнической и электронной областях рекомендуются обозначения:

  • «bit» для обозначения бита;
  • «o» или «B» для обозначения октета или байта. «о» — единственное указанное обозначение во французском языке.

Аналогом бита в квантовых компьютерах является кубит (q-бит; «q» от англ. quantum, квант).

Двоичные логарифмы других оснований[править | править код]

Единицы измерения информации. Обозначения:

  • зелёные штрихи на вертикальной шкале слева — значения натурального логарифма для целых чисел;
  • жёлтая кривая — график натурального логарифма;
  • бит показан чёрным и белым прямоугольниками, так как принимает одно из двух возможных значений;
  • высота прямоугольника одного бита равна loge(2);
  • «nibble» — тетрада или ниббл, 4 бита;
  • трит показан тремя разноцветными прямоугольниками, так как принимает одно из трёх возможных значений;
  • высота прямоугольника одного трита равна loge(3);
  • харт (дит, децит) показан прямоугольником, залитым градиентом, принимает одно из 10-и возможных значений;
  • высота прямоугольника одного харта (дита, децита) равна loge(10); количество синих штрихов равно 20; расстояние между штрихами равно loge(10)/20;
  • ширина прямоугольников равна 1;
  • горизонтальная линия, подписанная «1 Nat», имеет высоту 1 нат = log2e.

Замена логарифмируемого числа с 2 на e, 3, 4, 8, 10, 16, 27 и др. приводит соответственно к битовым (двоичным) эквивалентам редко употребляемых единиц нат, трит, тетрит (tetrit — tetral digit) (двубит), октит (octit — octal digit) (трибит), Харт (дит (dit — decimal digit), бан, децит (decit — decimal digit)), ниббл (гексадецит, четырёхбит), гептакозаит и др., равных соответственно:

бита,
бита,
1 двубит = бита,
1 трибит = бита,
бита,
1 четырёхбит = бита,
бита.

См. также[править | править код]

  • NX-бит
  • Бит чётности
  • Битовые операции
  • Двоичная система счисления
  • Двоичный триггер
  • Единицы измерения информации
  • Битрейт

Примечания[править | править код]

Источник