Какое из свойств не относится к модификационной изменчивости

Какое из свойств не относится к модификационной изменчивости thumbnail

Под изменчивостью понимают способность организмов приобретать признаки и свойства отличные от родительских, характерных для данного вида. Изменчивость
является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.

Традиционно различают ненаследственную и наследственную изменчивость.

Виды изменчивости

Модификационная изменчивость

Модификационная (фенотипическая) изменчивость — изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не
приводит к изменениям генотипа особи — все изменения касаются только фенотипа.

Напомню, что генотипом называют генетическую конституцию — совокупность генов одного организма, полученных от родителей. Фенотип (греч. phаino — обнаруживаю) —
совокупность наблюдаемых характеристик организма (любой морфологический, гистологический, биохимический, поведенческий признак).

Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года.

Модификационная изменчивость

Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников.

Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для
хищников.

Относительность приспособленности

Еще одним примером модификационной изменчивости служит изменение окраски шерсти у гималайских кроликов. Они рождаются полностью белыми, так как их эмбриональное
развитие протекает в условиях повышенной температуры.

Однако в результате воздействия холода на разные участки их тела, шерсть начинает темнеть. В естественных условиях шерсть темная на ушах, носе, лапах и хвосте.

В эксперименте лед привязывают к спине, и через некоторое время шерсть на этом месте начинает темнеть. Это наглядно демонстрирует влияние внешней среды на проявление
признака.

Изменения окраски шерсти у гималайских кроликов

Вам известно, что человек, побывавший на солнце, получает его «отпечаток» — загар. Потемнение цвета кожи в данном случае связано с активной выработкой
пигмента меланина, который защищает кожу и внутренние органы от УФ излучения.

Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени
— все дело в норме реакции.

Норма реакции

Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.

Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.

Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.

Узкая и широкая норма реакции

Итак, подведем итоги. Для фенотипической (ненаследственной, групповой, определенной) изменчивости характерно:

  • Причина изменения — влияние факторов внешней среды
  • Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам
  • Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом
  • Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)
Наследственная изменчивость

Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) — форма изменчивости, вызванная изменениями генотипа организма,
которые могут быть связаны с мутационной или комбинативной изменчивостью.

В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а
это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она — наследственная.

Наследственная изменчивость

Комбинативная изменчивость

Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Эти комбинации возникают во время
мейоза в результате хорошо вам знакомого (я надеюсь!) кроссинговера — обмена участками между гомологичными хромосомами.

Запомните, что в основе комбинативной изменчивости лежит три краеугольных момента:

  • Случайная комбинация генов в ходе кроссинговера
  • Независимое расхождение хромосом в мейозе
  • Случайная встреча гамет при оплодотворении

Комбинативная изменчивость

Я всегда говорю ученикам, что комбинативная изменчивость — это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере,
не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении.

То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.

Сходство детей и родителей

Мутационная изменчивость

Мутационная изменчивость связана с возникновением мутаций. Мутации (лат. mutatio — изменение) — внезапные, возникающие спонтанно или вызванные мутагенами
наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Для того, чтобы понять суть мутационной изменчивости, давайте дадим характеристику мутациям:

  • Мутации — резкие спонтанные изменения генотипа
  • Стойкие, передаются потомкам через половые клетки (гаметы)
  • Ненаправленные. Большинство мутаций — вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма
  • Носят индивидуальный характер

Гетерохромия

Среди мутаций различают следующие виды:

  • Генные (точечные)
  • Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько
    нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация).

    Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. К примеру:
    изначально триплет ДНК «ТАЦ» кодировал аминокислоту «Мет», нуклеотид «Т» выпал из триплета произошла вставка нуклеотида «Г». В результате
    вместо аминокислоты «Мет» теперь синтезируется аминокислота Вал.

    Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. Только что вы узнали об универсальной
    схеме — изменении фенотипа в результате изменений генотипа.

    Генные мутации

  • Хромосомные
  • В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме
    и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.

    В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия),
    перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).

    Хромосомные мутации

  • Геномные мутации
  • Данный тип мутаций проявляется в изменении числа хромосом. Выделяют:

    • Автополиплоидию — кратное увеличение числа наборов хромосом
    • В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов
      более крупные и сочные плоды.

      В селекции полиплоидию у растений вызывают добавлением специального химического вещества — колхицина, который блокирует образование
      нитей веретена деления. Вследствие этого хромосомы не расходятся и остаются в одной клетке — набор хромосом увеличивается в 2 раза.

      Полиплоидия у растений

    • Аллополиплоидия (греч. állos — другой и polýploos — многократный) — объединение в организме хромосомных наборов от разных видов или родов
    • Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и
      ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m). В результате такого скрещивания получают растение — тритикале. Тритикале дает отличный урожай, однако из-за геномной мутации это растение стерильно.

      Тритикале

      Также примером отдаленной гибридизации, соответственно и аллополиплоидии, является гибрид осла (самца) и лошади (самки) — мул. Это животное отличается большой выносливостью, но опять-таки бесплодное вследствие геномной мутации.

      Мул

    • Анеуплоидия (греч. ἀν- — отрицательная приставка + εὖ — полностью + πλόος — кратный + εἶδος — вид
    • Анеуплоидия — изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно
      гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке («лишние» хромосомы).

      В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом — нуллисомии. Если к паре хромосом
      добавляется одна лишняя, говорят о трисомии.

      Наследственные болезни, в том числе связанные с геномными мутациями: синдром Шерешевского-Тёрнера, Дауна — мы более детально обсудим
      в следующей статье, которая посвящена наследственным заболеваниям.

      Синдром Дауна

Читайте также:  Какое свойство отличается кристалл от аморфного тела

Раз уж мы затронули аутбридинг, то следует коснуться явления инбридинга и гетерозиса для их полного понимания.

Инбридинг (англ. in — в, внутри + breeding — разведение) — скрещивание близкородственных форм, в результате которого в ряду
поколений увеличивается гомозиготность. С помощью инбридинга выводят чистые линии (AA, aa, BB, bb). Однако известно, что близкородственное
скрещивание может приводить к проявлению рецессивных генов заболеваний и ослаблению потомства.

Инбридинг

Гетерозис (греч. ἕτερος — другой + -ωσις — состояние) — явление увеличения жизнеспособности гибридов, вследствие унаследования ими различных
вариантов аллельных генов от своих разнородных родителей. Увеличение жизнеспособности связывают с переходом генов в гетерозиготное состояние.

Гетерозис

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Титульная страница «Происхождения видов», 1859 год

Модификацио́нная изме́нчивость  — способность организмов с одинаковым генотипом развиваться по-разному в разных условиях окружающей среды. При этом изменяется фенотип, но не изменяется генотип. В англоязычной литературе до 90-х годов XX в. в аналогичном значении нередко использовалось понятие «адаптивная модификация», в настоящее же время преимущественно используется понятие «фенотипическая пластичность». Именно этот класс явлений в первую очередь лежит в основе «определённой изменчивости», которую описывал Чарльз Дарвин, в противовес «неопределённой изменчивости», основанной, главным образом, на мутациях в генетическом аппарате.

Характеристика модификационной изменчивости[править | править код]

  • Изменяется фенотип, но не генотип — изменения фенотипа обусловлены физиологическими реакциями клеток.
  • Определенность (предсказуемость): конкретному действующему фактору среды соответствует определенная реакция фенотипа, свойственная данному генотипу (в большинстве случаев — всем представителям популяции).
  • Изменения могут быть обратимыми (более или менее) или необратимыми на уровне отдельного организма, в зависимости от механизма, посредством которого осуществляется данная форма изменчивости в конкретном случае. Пример обратимого изменения — приобретение и утрата загара; сезонная перемена шубы у зайца. Пример необратимого изменения — образование рубца на месте глубокой раны.
  • Отсутствие устойчивого наследования возникающих изменений.
  • Математически выстраиваемая зависимость между силой действующего фактора среды и степенью изменения признака. Эта зависимость может иметь разный вид, и в каждом конкретном случае она определяется эволюционной историей вида.

Условная классификация модификационной изменчивости[править | править код]

  • По изменяющимся признакам организма:
    • морфологические изменения
    • физиологические и биохимические адаптации — гомеостаз (повышение уровня эритроцитов в горах и т. д.)
    • поведенческие реакции
  • По размаху изменчивости (разнице между минимальным и максимальным возможным выражением признака для данного генотипа)
    • узкая
    • широкая
  • По значению:
    • адаптивные модификации (приспособительные реакции в ответ на различные условия окружающей среды)
    • морфозы (ненаследственные изменения фенотипа, не имеющие приспособительного характера, которые обычно возникают в ответ на экстремальные (стрессовые) воздействия факторов среды.
  • По длительности:
    • быстрые модификации — возникают у особей, непосредственно испытывающих воздействие фактора среды и не передаются потомству.
    • длительные модификации — сохраняются на два-три (иногда более) поколения, даже в отсутствие непосредственного воздействия фактора среды на потомство.

Механизм модификационной изменчивости[править | править код]

Окружающая среда как причина модификаций[править | править код]

Модификационная изменчивость — это результат не изменений генотипа, а его непосредственной реакции на условия окружающей среды. При модификационной изменчивости наследственный материал не изменяется, — изменяется проявление генов.

Читайте также:  Какая структура определяет химический состав белка и его биологические свойства

Стимулы внешней среды воздействуют на поведение клеток и многоклеточных организмов благодаря наличию чувствительных рецепторов (они имеются не только в органах чувств животных, но и в каждой живой клетке), которые передают цепочки сигналов, меняющих регуляцию функционирования определенных генов. Таким образом, факторы окружающей среды способны регулировать интенсивность выработки клетками специфических белков, от которых зависит развитие, физиология и поведение организма.

Один из примеров — появление «загара» при длительном пребывании человека под лучами ультрафиолета. При воздействии ультрафиолетовых лучей происходит разрушение некоторого количества клеток эпидермиса, что приводит к выделению эндотелина-1 и эйкозаноидов. Они вызывают активацию фермента тирозиназы и его биосинтез. Тирозиназа, в свою очередь, является ключевым ферментом синтеза меланина.

В большинстве случаев модификационная изменчивость способствует адаптации организмов к условиям окружающей среды — генотип реагирует на средовые факторы и происходит перестройка фенотипа в соответствии с изменившимися потребностями организма (например, увеличивается число эритроцитов у человека, поднявшегося в горы). Однако иногда, под влиянием неблагоприятных факторов окружающей среды, например, влиянием тератогенных факторов на беременных, возникают нарушения фенотипа (морфозы), не имеющие какого-либо адаптивного значения. Интересно, что во многих случаях морфозы имеют вид «фенокопий» некоторых известных мутаций, что было пау отмечено в еще в 40-е годы XX века немецким биологом Рихардом Гольдшмидтом.

Норма реакции[править | править код]

Норма реакции — характерный спектр реакции фенотипа на дозу фактора среды (температуру, влажность, освещенность, обилие корма и пр.). Кривая, описывающая зависимость признака от фактора среды, может быть плавной (с уклоном вверх или вниз), а может быть бимодальной — в этом случае наблюдается явление полифенизма: фенотип представлен двумя или более хорошо различимыми вариантами, не связанных между собой промежуточными вариантами.

Предел проявления модификационной изменчивости организма при неизменном генотипе — норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции — спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Усиленное кормление приведёт к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки, узкие пределы — интенсивность окраски большинства животных, температура тела у теплокровных, число позвонков и пальцев у позвоночных.

Качественные признаки (наличие или отсутствие определенных органов и частей тела, паттерны рисунка на шкуре — пятна, полоски и пр., стадии жизненного цикла) проявляют фенотипическую пластичность гораздо реже, чем количественные. Но такие примеры все же встречаются. К примеру, у тлей в зависимости от количества питания и плотности населения, могут формироваться бескрылые или крылатые особи, также они могут переключаться между бесполым и половым размножением, откладывать яйца или переходить к живорождению. Следует отметить, что граница между количественными и качественными признаками иногда весьма условна.

Саранча встречается в двух основных формах: одиночной (вверху) и стадной (внизу), хорошо различимых морфологически, а также различающихся по поведению и физиологии. Переход между формами зависит от плотности популяции и может занимать одно-несколько поколений.

Модификационная изменчивость в теории эволюции[править | править код]

Дарвинизм[править | править код]

В 1859 году Чарльз Дарвин опубликовал свою работу на эволюционную тему под названием «Происхождение видов путём естественного отбора, или сохранение благоприятных рас в борьбе за жизнь». В ней Дарвин показал постепенное развитие организмов как результат естественного отбора. Естественный отбор базируется на следующей последовательности событий:

  • В некоторый момент времени в популяции появляется особь с новым признаком (фенотипом).
  • Особенности фенотипа определяют успешность воспроизводства (среднее количество потомков) данной особи и ее потомков, унаследовавших признак, по сравнению со всеми остальными членами популяции, обладающими иными фенотипами.
  • С течением времени особи, обладающие более благоприятным фенотипом распространяются и вытесняют носителей менее благоприятного варианта признака вследствие неизбежной конкуренции за ограниченные ресурсы среды.

Однако новые свойства особи могут формироваться как вследствие наследственной, так и модификационной изменчивости. И если наследственная изменчивость характеризуется изменением генотипа и эти изменения наследуются, то модификационная изменчивость не затрагивает генетический аппарат половых клеток. Модификационная изменчивость как таковая не наследуется (хотя здесь и есть некоторые оговорки, о которых будет сказано ниже) и, следовательно, не может напрямую вовлекаться в эволюцию признаков. Вместе с тем, в настоящее время достаточно острые дискуссии связаны с обсуждением степени косвенного влияния модификационной изменчивости на эволюционные процессы. В русскоязычном пространстве эти дискуссии связаны с «эпигенетической теорией эволюции», которая базируется на теоретических и экспериментальных работах Ивана Шмальгаузена и Конрада Уоддингтона. За рубежом схожие идеи развиваются в рамках исследовательской программы EES (Extended Evolutionary Synthesis). Основная идея в этих теоретизированиях заключается в том, что адаптация организма к новым условиям может происходить еще до появления «подходящей» мутации — за счет фенотипической пластичности. В дальнейшем по мере появления новых генотипов и при поддержке стабилизирующего отбора происходит «генетическая ассимиляция»[1] нового фенотипа — то есть сдвиг нормы реакции в сторону более благоприятного при данных условиях посредством фиксации соответствующих мутаций.

Естественный отбор и модификационная изменчивость[править | править код]

Норма реакции формируется под влиянием естественного отбора. Естественный отбор тем или иным образом изменяет границы и ширину нормы реакции, и на основании этого влияния выделяют 3 основные формы естественного отбора: стабилизирующий, движущий и дизруптивный отбор.

Стабилизирующий отбор реализуется в том случае, если любое отклонение признака от среднего значения снижает его адаптивность. Такой отбор направлен на сужение нормы реакции признака и фиксации вариационной кривой около среднего значения. Например, у растений сохраняется форма и размер цветка, которые отвечают форме и размеру насекомого, которое опыляет растение. У млекопитающих и птиц стабилизирующий отбор поддерживает постоянство температуры тела. Следует обратить внимание, что стабилизация какого-либо признака обычно подразумевает формирование в ходе эволюции достаточно тонких регуляторных механизмов, которые и обеспечивают надежность соответствующих процессов физиологии и развития.

Читайте также:  Какие из свойств не соответствуют белкам

Движущий отбор обычно появляется в новых условиях, когда наиболее благоприятным для организма оказывается не среднее значение, а левая (сниженное значение) или правая (повышенное значение) область нормы реакции. Такой отбор поддерживает любые уклоняющие мутации. В конечном итоге это приводит к сдвигу границ нормы реакции в соответствующую сторону. Например, у насекомых в зоне регулярной обработки полей инсектицидами может повышаться стойкость к данным химикатам.

Дизруптивный отбор схож с движущим отбором, но в этом случае поддерживаются уклонения в обе стороны от среднего значения (в сторону как уменьшения, так и увеличения). Следствием такого отбора может два итога. Первый — разделение популяции на две субпопуляции, каждая из которых характеризуется своим диапазоном нормы реакции — в области малых и больших значений. Например, на островах эволюция насекомых шла в направлении усиления крыльев или их полной редукции — оба варианта лучше адаптируют насекомое к жизни при сильном ветре (частом на океанических островах), чем средне развитые крылья. Второй возможный исход — возникновение полифенизма. Полифенизм — это такой вариант фенотипической пластичности, который выражается в развитии одного из двух (или более) хорошо различимых фенотипов. Яркий пример — саранча, которая имеет ярко различающиеся стадную и одиночную формы. Различия стадной и одиночной форм саранчи затрагивают не только морфологию, но и особенности поведения, работы иммунной системы и др. Еще один яркий пример — касты у муравьев. В качестве примеров полифенизма у растений можно привести различное строение подводных и надводных листьев у водяного лютика, стрелолиста и др.

Длительная модификационная изменчивость[править | править код]

В большинстве случаев модификационная изменчивость носит ненаследственный характер и является лишь реакцией генотипа данной особи на условия среды с последующим изменением фенотипа. Однако известны и примеры наследуемых средозависимых изменений, описанные у некоторых бактерий, простейших и многоклеточных эукариот. Чаще всего в настоящее время эти случаи определяют как «трансгенерационное эпигенетическое наследование», но в учебниках советского времени к таким случаям применяют понятие «длительная модификация».

Для понимания возможного механизма наследования модификационной изменчивости рассмотрим сначала понятие генетического триггера.

Например, в оперонах бактерий содержатся, кроме структурных генов, два участка — промотор и оператор. Оператор некоторых оперонов находится между промотором и структурными генами (у других он входит в состав промотора). Если оператор связан с белком, который называется репрессором, то вместе они не дают двигаться РНК-полимеразе по цепи ДНК. У бактерий E. сoli можно наблюдать подобный механизм. При недостатке лактозы и избытке глюкозы вырабатывается белок-репрессор (Lacl), который присоединяется к оператору, не давая РНК-полимеразе синтезировать мРНК для трансляции фермента, который расщепляет лактозу. Однако при попадании лактозы в цитоплазму бактерии лактоза (вещество-индуктор) присоединяется к белку-репрессору, изменяя его конформацию, что приводит к диссоциации репрессора от оператора. Это обуславливает начало синтеза фермента для расщепления лактозы.

У бактерий при делении вещество-индуктор (в случае с E. coli — лактоза) передаётся в цитоплазму дочерней клетки и запускает диссоциацию белка-репрессора от оператора, что влечет за собой проявление активности фермента (лактазы) для расщепления лактозы у палочек даже при отсутствии этого дисахарида в среде.

Если оперона два и если они взаимосвязаны (структурный ген первого оперона кодирует белок-репрессор для второго оперона и наоборот), они образуют систему, которая называется триггером. При активном состоянии первого оперона отключен второй. Однако под действием окружающей среды может быть заблокирован синтез белка-репрессора первым опероном, и тогда происходит переключение триггера: активным становится второй оперон. Такое состояние триггера может наследоваться следующими поколениями бактерий. Молекулярные триггеры могут обеспечивать длительные модификации и у одноклеточных эукариот (в частности, подобные явления отмечались у дрожжей, инфузорий и др.).

Наиболее любопытны и наименее понятны с точки зрения механизма случаи наследования индуцированных средой изменений у многоклеточных организмов — животных и растений. Прогресс в области эпигенетики, заявившей свои права в течение последних двух десятилетий, позволяет находить естественные объяснения подобным явлениям там, где раньше они казались невозможными. Наиболее вероятным фактором, который позволяет передавать «благоприобретенные» признаки от родительской особи к потомству видится малая некодирующая РНК. Эти молекулы могут попадать в зиготу (оплодотворенную яйцеклетку) с цитоплазмой и содержимым ядер яйцеклетки и сперматозоида и управлять включениями и выключениями генов развивающегося организма, влияя на формирующийся фенотип[2].

Модификационная изменчивость в жизни человека[править | править код]

Практическое использование закономерностей модификационной изменчивости имеет большое значение в растениеводстве и животноводстве, так как позволяет предвидеть и заранее планировать максимальное использование возможностей каждого сорта растений и породы животных (например, индивидуальные показатели достаточного количества света для каждого растения). Создание заведомо известных оптимальных условий для реализации генотипа обеспечивает их высокую продуктивность.

Также это позволяет целесообразно использовать врождённые способности ребёнка и развивать их с детства — в этом состоит задача психологов и педагогов, которые ещё в школьном возрасте пытаются определить склонности детей и их способности к той или иной профессиональной деятельности, увеличивая в пределах нормы реакции уровень реализации генетически детерминированных способностей детей.

Примечания[править | править код]

См. также[править | править код]

  • https://biomolecula.ru/articles/epigenetika-povedeniia-kak-babushkin-opyt-otrazhaetsia-na-vashikh-genakh
  • https://elementy.ru/novosti_nauki/433245/Fenotipicheskaya_plastichnost_pozvolyaet_predskazyvat_evolyutsionnye_izmeneniya_u_zhukov_navoznikov
  • https://elementy.ru/novosti_nauki/431900/Pishchevoe_povedenie_u_peshchernoy_ryby_nasleduetsya_epigeneticheski
  • https://elementy.ru/genbio/synopsis/201/Fenotipicheskaya_plastichnost_organizmov_i_evolyutsiya

Источник