Какое физическое свойство металлов являются общими а какие нет

Какое физическое свойство металлов являются общими а какие нет thumbnail

Общие физические свойства мекталлов:

1) Пластичность — способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В ряду — Au, Ag, Cu, Sn, Pb, Zn, Fe уменьшается.
2) Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.
3) Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду — Ag, Cu, Al, Fe уменьшается. При нагревании электропроводность уменьшается, т. к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».
4) Теплопроводность. Закономерность та же. Обусловлена высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.
5) Твердость. Самый твердый – хром (режет стекло) ; самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.
6) Плотность. Она тем меньше, чем меньше атомная масса металла и чем больше радиус его атома (самый легкий — литий (r=0,53 г/см3); самый тяжелый – осмий (r=22,6 г/см3).
Металлы, имеющие r < 5 г/см3 считаются «легкими металлами».
7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т. пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C).
Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Все металлы являются восстановителями. Для металлов главных подгрупп восстановительная активность (способность отдавать электроны) возрастает сверху вниз и справа налево. Например, Натрий и кальций вытесняют водород из воды уже при обычных условиях:

Ca + 2H2O  Ca(OH)2 + H2¬ ; 2Na + 2H2O  2NaOH + H20

А магний при повышении температуры:

Mg + H2O –t MgO + H2

Восстановительная способность и химическая активность элементов побочных подгрупп увеличивается снизу вверх по группе (например, серебро на воздухе окисляется, а золото нет; медь вытесняет серебро из его соли) :

Cu + 2AgNO3 → 2Ag ↓ + Cu(NO3)2
Cu0 -2 ē → Cu+2 1 О. О. В.
Ag+ + ē → Ag0 2 В. В. О.

Высшая положительная степень окисления для металлов главных подгрупп в их соединениях равна номеру группы (например, NaCl, MgCl2, AlCl3, SnCl4), а для металлов побочных подгрупп в их кислородосодержащих соединениях также часто совпадает с номером группы (например, ZnO, TiO2, V2O5, CrO3, KMnO4).
Свойства оксидов металлов слева направо по периоду и снизу вверх по группе изменяются от основных к амфотерным для металлов главных подгрупп (Na2O и MgO – основные оксиды, Al2O3 и BeO – амфотерные) . Для металлов побочных подгрупп свойства оксидов, в которых металлы проявляют свою высшую степень окисления, изменяются от основных через амфотерные к кислотным ( CuO — основной, ZnO — амфотерный, CrO3 — кислотный) .
Сила оснований, образуемых металлами главных подгрупп увеличивается справа налево по периоду и сверху вниз по группе ( Be(OH)2 и Al(OH)3– амфотерные гидроксиды, Mg(OH)2 — слабое основание, NaOHи – Ca(OH)2 сильные основания) . Гидраты оксидов металлов побочных подгрупп с высшими степенями окисления металла вдоль периода слева направо меняют свои свойства от оснований через амфотерные гидроксиды к кислотам ( Cu(OH)2 — основание, Zn(OH)2 — амфотерный гидроксид, H2CrO4 — кислота) .
В природе металлы встречаются в основном в виде соединений – оксидов или солей. Исключение составляют такие малоактивные металлы, как серебро, золото, платина, которые встречаются в самородном состоянии.
Все способы получения металлов основаны на процессах их восстановления из природных соединений.

Источник

Анонимный вопрос  ·  3 апреля 2018

14,2 K

Свойства металлов делятся на несколько групп: физические, химические, механические и технологические.

1) Физические свойства: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность.

2) Химические свойства: окисляемость, растворимость и коррозионная стойкость.

3) Механические свойства: прочность, твердость, упругость, пластичность.

4) Технологические свойства: прокаливаемость, жидкотекучесть, ковкость, обрабатываемость резанием.

Слишком примитивно, кое-что неверно, что-то устарело (терминология). Не советую использовать.

Существуют ли сплавы железа с пластиками?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  ·  spbstanki.ru

Сплавов таких точно нет. Уж слижком разные это материалы. Железо — чистый металл. А пластмассы — это многокомпонентная смесь на основе полимеров. Можно создать сталь: добавляя легирующие элементы в железо: другие металлы и неметаллы (кремний, углерод и т.д..). Но в чем то Вы правы и ваша мысль выражена уже давно: в создании композитных материалов. Композитные материалы это многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жёсткостью и т. д..

Как обозначается металл в химии?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  ·  spbstanki.ru

Возможно, что под обозначением вы имеете в виде «Ме», так обозначают металлы в химии на общих схемах различных химических реакций (окисления, восстановления и т.д..) Но у каждого металла, как у простого вещества, есть свое принятое обозначение в таблице Менеделева: Fe (железо); Na (натрий) и т.д..

Что такое «усталость металла»?

По-простому — падение прочности на местах изгибов, подвергающихся постоянной нагрузке на изгиб, а также падение прочности деталей, находящихся под постоянной нагрузкой, например, болтов. От постоянной вибрации со временем пойдут трещины даже на ровном листе металла, а натянутые болты всегда потихоньку «текут». Сначала это может быть незаметно, но потом процесс развивается стремительно до трещины и даже разлома.
 Срок службы нагруженного постоянными силами металлического изделия зависит от конструкции, металла, марки сплава, правильности обработки, например, закалки, допустимого падения прочности, правильности сборки изделия, интенсивности эксплуатации и т.д. Срок службы — это срок, до истечения которого металлическая деталь гарантированно сохраняет свою прочность в пределах расчётной. Он рассчитывается конструкторами при проектировании, и по достижении срока деталь должна быть заменена , или же списывается (изымается из эксплуатации) всё изделие. В некоторых случаях срок службы может быть продлён после контрольных испытаний.

Читайте также:  Какие полезные свойства артишока

Прочитать ещё 1 ответ

Какие свойства характеризуют графит?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Физические: цвет от черного до стального серого, металлический блеск, жирный, пачкает пальцы, хрупкий, при воздействии расслаивается на части-чешуйки. Огнеупорен, проводит электричество, невысокая плотность.

Химические: не растворяется в кислотах, с некоторыми солями и щелочными металлами образует соединения наподобие включений. С кислородом реагирует при очень высокой температуре, образуя в итоге углекислый газ.

Что применяется для получения металлов?

Невское Оборудование поставщик металлообрабатывающего оборудования и станков  ·  spbstanki.ru

Так как металлы в земной коре встречаются преимущественно в виде соединений в различных минералах (как правило: оксидов, гидроксидов, солей и т.д..), а в самородном состоянии могут находиться лишь неактивные металлы (такие как: медь, золото, серебро, платиновые металлы, ртуть). Поэтому металлы в основном получают из руд с помощью металлургических процессов. Любой металлургический процесс – это процесс восстановления металла с помощью различных восстановителей. Он состоит из трех основных этапов: обогащение руды, восстановление металлов из их соединений, очистка технических металлов.

Восстановительные процессы способов получения металлов делятся на следующие:

  • Пирометаллургия – восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, алюминия, магния и др.

  • Гидрометаллургия – восстановление металлов из солей в растворе.

  • Электрометаллургия – восстановление металлов в процессе электролиза растворов и расплавов солей.

Источник

Общие физические свойства металлов

Благодаря  наличию свободных электронов (“электронного газа”) в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1)     Пластичность – способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2)    Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3)     Электропроводность. Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов.  При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение “электронного газа”.

4)     Теплопроводность.  Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность – у висмута и ртути.

5)     Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6)     Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий – литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее  5 г/см3 считаются “легкими металлами”.

7)     Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

fizicheskie-svojstva-metallov

Общие химические свойства металлов

Сильные восстановители: Me0 – nē →  Men+

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

1. Реакции металлов с неметаллами

1)     С кислородом:
2Mg + O2 →  2MgO

2)     С серой:
Hg + S →  HgS

3)     С галогенами:
Ni + Cl2  –t°→   NiCl2

4)     С азотом:
3Ca + N2  –t°→   Ca3N2

5)     С фосфором:
3Ca + 2P  –t°→   Ca3P2

6)     С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H2 →  2LiH

Ca + H2 →  CaH2

2. Реакции металлов с кислотами

1)     Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl →   MgCl2 + H2

2Al+ 6HCl →  2AlCl3 + 3H2

6Na + 2H3PO4 →  2Na3PO4 + 3H2­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

vzaimodejstvie-metallov-s-kislotami-okislitelyami1

Zn + 2H2SO4(К) → ZnSO4 + SO2 + 2H2O

4Zn + 5H2SO4(К) → 4ZnSO4 + H2S + 4H2O

3Zn + 4H2SO4(К) → 3ZnSO4 + S + 4H2O

2H2SO4(к) + Сu → Сu SO4 + SO2 + 2H2O

10HNO3 + 4Mg → 4Mg(NO3)2 + NH4NO3 + 3H2O

4HNO3(к) + Сu → Сu (NO3)2 + 2NO2 + 2H2O

3. Взаимодействие металлов с водой

1)     Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H2O →  2NaOH + H2

Ca+ 2H2O →  Ca(OH)2 + H2

2)     Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H2O  –t°→   ZnO + H2­

3)     Неактивные (Au, Ag, Pt) – не реагируют.

4.    Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl2 →  Hg+ CuCl2

Fe+ CuSO4 →  Cu+ FeSO4

obshhie-svojstva-metallov

В промышленности часто используют не чистые металлы, а их смеси — сплавы, в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем – дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) – это широко известные чугун и сталь.

Читайте также:  По степеням окисления какие вещества могут проявлять только окислительные свойства

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой, в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией. Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте – металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа+, Са2+,А13+,Fе2+ и Fе3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg – только серной (концентрированной) и азотной кислотами, а Рt и Аи – «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их коррозия, т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО2 и SО2; создается кислотная среда, и катионы Н+ вытесняются активными металлами в виде водорода Н2 (водородная коррозия).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь), имеют высокую коррозионную стойкость.

Источник

Свойства металлов

Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.

Содержание

Какое физическое свойство металлов являются общими а какие нет

Свойства металлов

Свойства металлов делятся на физические, химические, механические и технологические.

Физические свойства металлов

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м3 или г/см3.

Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.

Электропроводность металлов — это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.

Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см2, длиной 1см в течение 1сек. при разности температур в 1°С.

Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной).

Расширяемость металлов при нагревании.Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.

Химические свойства металлов

К химическим — окисляемость, растворимость и коррозионная стойкость.

Окисление металлов — это реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). Если рассмотреть окисляемость шире, то это реакции, в которых атомы теряют электроны и образуются различные соединения, например, хлориды, сульфиды. В природе металлы находятся в основном в окисленном состоянии, в виде руд, поэтому их производство основано на процессах восстановления различных соединений.

Читайте также:  Какие из приведенных свойств принадлежат твердым телам

Растворимость металлов — это их способность образовывать с другими веществами однородные системы — растворы, в которых металл находится в виде отдельных атомов, ионов, молекул или частиц. Металлы растворяются в растворителях, в качестве которых выступают сильные кислоты и едкие щелочи. В промышленности наиболее часто используются: серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи — едкий натр и едкий калий.

Коррозионная стойкость металлов — это их способность сопротивляться коррозии.

 

Механические свойства металлов

К механическим — прочность, твердость, упругость, вязкость, пластичность.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.

Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость металлов — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.

Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.

Технологические свойства металлов

К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.

Жидкотекучесть металлов — это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.

Ковкость металлов —это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.

Свариваемость металлов — это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.

Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.

Таблицы свойств металлов

Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»

Свойства металлов: Чугун, Литая сталь, Сталь

3

4

  1. Предел прочности на растяжение
  2. Предел текучести (или Rp 0,2);
  3. Относительное удлинение образца при разрыве;
  4. Предел прочности на изгиб;
  5. Предел прочности на изгиб приведен для образца из литой стали;
  6. Предел усталости всех типов чугуна, зависит массы и сечения образца;
  7. Модуль упругости;
  8. Для серого чугуна модуль упругости уменьшается с увеличением напряжения растяжения и остается практически постоянным с увеличением напряжения сжатия.

Таблица «Свойства пружинной стали»

Свойства пружинной стали

  1. Предел прочности на растяжение,
  2. Относительное уменьшение поперечного сечения образца при разрыве,
  3. Предел прочности на изгиб;
  4. Предел прочности при знакопеременном циклическом нагружении при N ⩾ 107,
  5. Максимальное напряжение при температуре 30°С и относительном удлинении 1 2% в течение 10 ч; для более высоких температур см. раздел «Способы соединения деталей»,
  6. см. раздел «Способы соединения деталей»;
  7. 480 Н/мм2 для нагартованных пружин;
  8. Приблизительно на 40% больше для нагартованных пружин

Таблица «Свойства кузовных тонколистовых металлов»

Свойства кузовных тонколистовых металлов

Таблица «Свойства цветных металлов»

Свойства цветных металлов

  1. Модуль упругости, справочные данные;
  2. Предел прочности на растяжение;
  3. Предел текучести, соответствующий пластической деформации 0,2%;
  4. Предел прочности на изгиб;
  5. Наибольшая величина;
  6. Для отдельных образцов

Таблица «Свойства легких сплавов»

Свойства легких сплавов

  1. Предел прочности на растяжение;
  2. Предел текучести, соответствующий пластической деформации 0,2%;
  3. Предел прочности на изгиб;
  4. Наибольшая величина;
  5. Показатели прочности приведены для образцов и для отливок;
  6. Показатели предела прочности на изгиб приведены для случая плоского нагружения

Таблица «Металлокерамические материалы (PM)1) для подшипников скольжения»

Металлокерамические материалы (PM)1) для подшипников скольжения

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;
  2. Применительно к подшипнику 10/16 г 10;
  3. Углерод содержится, главным образом, в виде свободного графита;
  4. Углерод содержится только в виде свободного графита

Таблица «Свойства металлокерамических материалов (РМ)1 для конструкционных деталей»

Свойства металлокерамических материалов (РМ)1 для конструкционных деталей

10

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;

Магнитные материалы

Таблица «Свойства магнитомягких материалов»

Свойства магнитомягких материалов

  1. Данные относятся только к магнитным кольцам.

Магнитомягкие металлы

Таблица «Свойства магнитной листовой и полосовой стали»

Свойства магнитной листовой и полосовой стали

Материалы для преобразователей и электрических реакторов

Магнитная проницаемость листового сердечника для классов сплавов С21, С22, Е11, Е31 и Е41 для секции тонколистового сердечника EY11

Магнитная проницаемость листового сердечника для классов сплавов С21, С22, Е11, Е31 и Е41 для секции тонколистового сердечника EY11

Материалы для реле постоянного тока

Таблица «Свойства материалов для реле постоянного тока»

Свойства материалов для реле постоянного тока

  1. Нормируемые величины

Металлокерамические материалы для магнитомягких компонентов

Таблица «Свойства металлокерамических материалов для магнитомягких компонентов»

Свойства металлокерамических материалов для магнитомягких компонентов

Магнитомягкие ферриты

Таблица «Свойства магнитомягких ферритов»

Свойства магнитомягких ферритов

  1. Нормируемые величины;
  2. Потеря материалом магнитных свойств в зависимости от частоты при низкой плотности магнитного потока (В < 0,1 мТл);
  3. Потери магнитных свойств при высокой плотности магнитного потока; замеряются предпочтительно при f = 25 кГц, В = 200 мТл, Θ = 100°С;
  4. Магнитная проницаемость при строго синусоидальном магнитном поле; замеряется при f<; 25 кГц, В = 320 мТл, Θ = 100°С;
  5. Температура Кюри Θс, при которой начальная магнитная проницаемость μ, снижается ниже 10% от значения при температуре 25°С;
  6. Нормируемые величины.

Материалы для постоянных магнитов

Таблица «Свойства материалов для постоянных магнитов»

Свойства материалов для постоянных магнитов

19

  1. Нормируемые величины;
  2. Наименьшее значение;
  3. В диапазоне температур 273…373 К.

Сравнение материалов для постоянных магнитов и магнитомягких ферритов

Таблица «Диапазон магнитных характеристик некоторых широко используемых кристаллических материалов»

Диапазон магнитных характеристик некоторых широко используемых кристаллических материалов

Материалы для пайки

Таблица «Свойства материалов для пайки»

Свойства материалов для пайки

  1. Нет перечисленных в DIN 1707-100 или DIN EN 29453

22

  1. В зависимости от выполняемой операции.

23

  1. В зависимости от выполняемых операций

В следующей статье я расскажу о бензине и дизельном топливе.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Источник