Какое еще вещество кроме днк содержится в ядре

Какое еще вещество кроме днк содержится в ядре thumbnail

6. Каким образом осуществляется точная передача наследственной информации при делении клеток?

7. Почему клеточные структуры называют «органоидами», а не «органами»?

8. Какое универсальное свойство жизни обеспечивается работой ядра?

9. Какое еще вещество, кроме ДНК, содержится в ядре?

10. Как вы думаете, почему развитие современной медицины тесно связано с цитологическими исследованиями?

ТКАНИ И ОРГАНЫ. СИСТЕМЫ ОРГАНОВ

Вариант 1

Задание. Выберите один правильный ответ.

1. Сколько основных типов тканей выделяют в организме человека:

А. 2

Б. 4

В. 8

2. Слизистые оболочки внутренних органов образованы:

A. Эпителиальной тканью

Б. Мышечной тканью

B. Соединительной тканью

3. Железы внутренней секреции выделяют в кровь:

А. Витамины

Б. Минеральные соли

В. Гормоны

4. Способность к регенерации наиболее выражена у клеток:

A. Мышечной ткани

Б. Нервной ткани

B. Эпителиальной ткани

5. Промежутки между органами заполнены:

A. Мышечной тканью

Б. Рыхлой волокнистой тканью

B. Жировой тканью

6. Транспортную функцию в организме выполняет:

А. Кровь

Б. Жировая ткань

В. Хрящевая ткань

7. Способностью к длительным, активным произвольным сокращениям обладают клетки:

A. Гладкой мышечной ткани

Б. Поперечно-полосатой скелетной мышечной ткани

B. Поперечно-полосатой сердечной мышечной ткани

8. Стенки сосудов и внутренних органов образованы клетками:

A. Гладкой мышечной ткани

Б. Поперечно-полосатой скелетной мышечной ткани

B. Поперечно-полосатой сердечной мышечной ткани

9. Нервные импульсы от тела нейрона передаются по:

А. Клеткам нейроглии

Б. Дендритам

В. Аксону

10. Почки являются основным органом:

A. Эндокринной системы

Б. Мочевыделительной системы

B. Половой системы

Вариант 2

Задание. Вставьте пропущенное слово.

1. Группа клеток одинакового строения, общего происхождения и выполняющих определенную функцию, называется…

2… ткани образуют поверхность кожи и слизистые оболочки… органов.

3. Железистые эпителиальные клетки выделяют различные… и образуют… внешней и внутренней секреции

4. Железы… секреции не имеют протоков и выделяют… непосредственно в…

5. Промежутки между органами заполняет… соединительная ткань, костная и хрящевая ткани выполняют… функцию, а кровь осуществляет… веществ и… защиту организма.

6. Основная особенность мышечной ткани – способность…

7… мышечная ткань образует стенки сосудов и внутренних органов, сокращение ее клеток происходит… от воли человека.

8. Поперечно-полосатая мышечная ткань образует… мускулатуру, сокращается… и состоит из многоядерных клеток с поперечной…

9. Поперечно-полосатая… мышечная ткань характеризуется переплетениями между клетками и сокращается не отдельными волокнами, а целой…

10. Нервная ткань состоит из основных клеток – …, способных вырабатывать и передавать нервные… и клеток…, выполняющих вспомогательную функцию.

11. Нейроны состоят из тела, коротких отростков – … и длинных – …, места контактов отростков друг с другом называются…

12. Часть тела, занимающая определенное положение, состоящая из клеток разных… и выполняющая определенную функцию, называется…

13. Опорно-двигательную функцию в организме выполняют… и… системы, окислительные процессы и газообмен обеспечиваются работой…, транспорт веществ обеспечивается… системой, приток питательных веществ дает… система, выделение осуществляет… система, а координируют работу всех органов… и… системы.

Вариант 3

Задание. Дайте краткий ответ из одного-двух предложений.

1. Что такое ткань? Какие виды тканей составляют организм человека?

2. Каковы характерные особенности клеток эпителиальных тканей?

3. Чем различаются между собой железы внешней и внутренней секреции?

4. Назовите общее свойство соединительной ткани и функции отдельных ее разновидностей.

5. Охарактеризуйте основные типы мышечной ткани.

6. Назовите структурные и функциональные особенности клеток нервной ткани.

7. Что такое «орган»? Объясните и приведите примеры.

8. Перечислите основные системы органов и их функции.

Вариант 4

Задание. Дайте полный развернутый ответ.

1. Про какую ткань нельзя сказать, что она состоит из клеток, одинаковых по строению и функциям?

2. Какая ткань является преобладающей в составе костей скелета? Какие еще ткани могут входить в состав костей, каковы их функции?

3. Химический анализ какой ткани используют для определения состояния здоровья человека?

4. Принцип работы сердечной мышцы подчиняется закону «все или ничего». Объясните это, учитывая особенности строения мышцы.

5. Для обеспечения организма энергией требуется работа трех систем органов. Каких? Аргументируйте свой ответ.

6. Являются ли постоянными химический состав и функциональные свойства тканей человека в течение жизни?

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ

Вариант 1

Задание. Выберите один правильный ответ.

1. Гуморальная регуляция в организме осуществляется с помощью:

A. Витаминов

Б. Гормонов

B. Минеральных солей

2. Гормоны, образованные эндокринными железами, выделяются:

А. В полость тела

Б. В полость кишечника

В. В кровь

3. Работа большинства желез внутренней секреции контролируется:

А. Гипофизом

Б. Щитовидной железой

В. Эпифизом

4. Гормон роста синтезируют клетки:

A. Надпочечников

Б. Гипофиза

B. Щитовидной железы

5. Щитовидная железа вырабатывает:

А. Инсулин

Б. Гормон роста

В. Тироксин

6. Околощитовидные (паращитовидные) железы регулируют:

A. Содержание воды в клетках

Б. Обмен солей кальция и фосфора

B. Обмен органических соединений

7. Гормоны, стимулирующие деятельность организма в состоянии физического и психического напряжения, синтезируются клетками:

A. Надпочечников

Б. Щитовидной железы

B. Паращитовидных желез

8. Примером железы смешанной секреции является:

A. Гипофиз

Б. Поджелудочная железа

B. Надпочечники

9. Недостаток синтеза инсулина вызывает:

A. Кретинизм

Б. Гипогликемию

B. Сахарный диабет

10. Недостаток выработки тироксина вызывает:

A. Кретинизм

Б. Гипогликемию

B. Сахарный диабет

11. Избыточная активность клеток гипофиза приводит к:

Источник

Благодаря ей, у человека есть общее с горчицей, салатом и кенгуру. Если ее изъять из всех клеток тела и выпрямить в линию, можно составить цепочку длиной в 16 миллиардов километров – двойное расстояние от Земли до Плутона… Речь идет об уникальном и загадочном соединении – ДНК. Сегодня ученые считают, что ДНК не только определяет то, каким будет человек, но и то, как долго он проживет. Дело в том, что клетка гибнет, когда теломеры (отрезки ДНК на краю хромосом), укорачивающиеся с каждым её делением, становятся предельно короткими. Если ученые будущего (среди которых можете оказаться вы) научатся искусственно удлинять теломеры, человечество, возможно, воплотит в жизнь мечту о вечной молодости. На этом уроке вы узнаете о том, как устроена ДНК, как и где хранится «генетическая память», а также какую роль играют нуклеиновые кислоты в клетке.

Тема: Основы цитологии

Урок: Нуклеиновые кислоты и их роль в жизнедеятельности клетки

Определение ДНК

Нуклеиновые кислоты представляют собой высокомолекулярные линейные полимеры. Так как содержание нуклеиновых кислот больше всего в ядре, то они получили свое название от латинского слова nucleus («ядро», лат.). Впрочем, нуклеиновые кислоты содержатся не только в ядре, где, безусловно, их больше всего, но и в хлоропластах и митохондриях (рис. 1).

Рис. 1. Органеллы, в которых содержится ДНК

Нуклеиновые кислоты являются биополимерами, которые состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из трех составных частей: из пятиуглеродного сахара – пентозы, из азотистого основания и остатка фосфорной кислоты (рис. 2).

Читайте также:  В каких продуктах содержится большое количество коллагена

Рис. 2. Нуклеотиды

Сахар, входящий в состав нуклеотида, представляет собой пентозу, то есть он является пятиуглеродным сахаром. В зависимости от вида пентозы (дезоксирибоза или рибоза) различают молекулы ДНК и РНК (рис. 3).

Рис. 3. Химический состав нуклеотидов

Азотистые основания. Во всех типах нуклеиновых кислот: ДНК или РНК, содержатся основания четырех разных видов (рис. 4). В ДНК: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В РНК вместо тимина (Т) урацил (У).

Рис. 4. Азотистые основания нуклеотидов ДНК и РНК

Фосфорная кислота. Нуклеиновые кислоты являются кислотами, потому что в их состав входит остаток фосфорной кислоты. Обратите внимание на то, что остаток фосфорной кислоты присоединен к сахару по гидроксильной группе 3’ и 5’ углеродом атома (рис. 5).

Рис. 5 Фосфодиэфирная связь между отдельными нуклеотидами в цепочке нуклеиновой кислоты

Это очень важно для понимания того, каким образом нуклеотиды образуют нуклеиновую кислоту. Они соединяются друг с другом с помощью т. н. фосфодиэфирной связи.

Фосфодиэфирная связь

Два нуклеотида образуют динуклеотид путем конденсации. В результате между фосфатной группой одного нуклеотида и гидроксигруппой сахара другого образуется т. н. фосфодиэфирная связь (рис. 6).

Рис. 6. Фосфодиэфирная связь

При синтезе полинуклеотидной цепи эта реакция повторяется несколько миллионов раз. Таким образом, полинуклеотид (рис. 7) строится путем образования фосфодиэфирных мостиков между 3’ и 5’ углеродами сахаров.

Рис. 7. Полинуклеотид

Фосфодиэфирные мостики возникают за счёт прочных ковалентных связей, это сообщает всем полинуклеотидным цепям прочность и стабильность, что очень важно, поскольку уменьшается риск повреждения (поломки) молекул ДНК.

Итак, нуклеиновые кислоты – это биополимеры, которые состоят из мономеров – нуклеотидов. В состав нуклеотидов входят три основные части, а именно пятиуглеродный сахар – пентоза, азотистые основания и остаток фосфорной кислоты. В зависимости от природы пентозы различают ДНК и РНК.

В состав ДНК входят аденин, цитозин, гуанин и тимин.

В состав РНК входят аденин, цитозин, гуанин, урацил.

Объединение нуклеотидов в нуклеиновую кислоту идет за счёт образования фосфодиэфирных мостиков, или фосфодиэфирной связи.

Структура молекулы ДНК

Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.

Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК

В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тимином, гуанином и цитозином (рис. 8).

Рис. 8. Водородная связь и вторичная структура ДНК

Иллюстрация принципа комплементарности.

Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозиномтри водородные связи.

В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).

Рис. 9. Лауреаты Нобелевской премии «за создание пространственной модели ДНК»

Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.

Эти цепи связаны друг с другом азотистыми основаниями. Если «раскрутить» молекулу ДНК, то она будет напоминать винтовую лестницу. Две цепочки – образованы остатками фосфорной кислоты и пентозы, а перекладины «лестницы» – азотистые основания, которые взаимодействуют друг с другом с помощью водородных связей.

Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

Третичная структура ДНК

У всех живых организмов молекула ДНК плотно упакована с образованием сложных трехмерных структур. Нахождение ДНК в суперспирализованном состоянии дает возможность сделать молекулу более компактной (рис. 10).

Рис. 10. Третичная структура ДНК. Сверхплотная упаковка ДНК с белками-гистонами образует хромосому

У всех живых организмов двуспиральная молекула ДНК плотно упакована и образует сложные трехмерные структуры (рис. 11).

Рис. 11. Модели двухцепочечных ДНК

Двухцепочная ДНК бактерий имеет кольцевидную форму и образует суперспираль. Суперспирализация необходима для упаковки громадной по клеточным меркам ДНК в малом объеме клетки.

Например, ДНК кишечной палочки имеет длину более 1 мм, в то время как длина клетки не превышает 5 мкм (в 1 мм = 1000 мкм) (рис. 12).

Рис. 12. ДНК в нуклеоиде бактерий (слева) и в клетках тела человека (справа)

Хромосомы эукариот представляют собой суперспирализованные линейные молекулы ДНК (рис. 13).

Рис. 13. Хромосомы эукариот

В процессе упаковки эукариотическая ДНК обматывает белки – гистоны, располагающиеся вдоль ДНК через определенные интервалы. Эти белки образуют нуклеосомы (рис. 14). Вторым уровнем пространственной организации ДНК является образование хроматина – волокон, из которых состоят хромосомы.

Рис. 14. Третичная структура ДНК

В ядре каждой клетки тела человека, кроме половых клеток, содержится 23 пары хромосом (рис. 15). На каждую из них приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека почти равна двум метрам, а число нуклеотидных пар в ней 3,2 млрд.

Рис. 15. Хромосомы человека. Кариотип мужчины

Так что, если бы молекула ДНК не была организована в плотную структуру, то наша жизнь была бы невозможна геометрически.

Функции молекулы ДНК

Функции ДНК – хранение и передача наследственной информации.

Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.

Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.

История открытия нуклеиновых кислот

В научной литературе посвященной изучению строению молекулы ДНК, как правило, упоминается Джеймс Уотсон и Френсис Крик (рис. 9).

Но первооткрывателями нуклеиновых кислот был Фридрих Иоганн Мишер (рис. 16), швейцарский ученый, который работал в Германии.

Рис. 16. Первооткрыватель нуклеиновых кислот

В 1869 году Мишер занимался изучением животных клеток – лейкоцитов. Для получения лейкоцитов он использовал гнойные повязки, которые ему доставлялись из больниц. Он брал гной, отмывал лейкоциты и выделял из них белок.

В процессе исследований Мишеру удалось установить, что кроме белков, в лейкоцитах содержится ещё какое-то неизвестное вещество.

Оно выделялось в виде нитевидного или хлопьевидного осадка при создании кислой среды. При добавлении щелочи этот осадок растворялся.

Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов соляной кислотой от них остаются ядра. Он сделал вывод, что в ядрах имеется неизведанное вещество, то есть новое вещество, которое он назвал нуклеином, от слова nucleus – ядро.

Читайте также:  В каких продуктах содержатся сложные углеводы таблица

Кроме этого, по данным химического анализа Мишер установил, что это новое вещество состоит из углерода, водорода, кислорода и фосфора. Фосфорорганических соединений в то время было известно очень мало, поэтому Мишер пришел к выводу, что открыл новый класс соединений в ядре.

Так в XIX веке стало известно о существовании нуклеиновых кислот, но тогда никто не мог предположить, какая огромная роль принадлежит нуклеиновым кислотам в сохранении разнообразия наследственных признаков организмов.

Вещество наследственности

Первые доказательства того, что молекула ДНК заслуживает довольно серьёзного внимания, были получены 1944 году группой бактериологов во главе с Освальдом Эвери. Он много лет изучал пневмококки – микроорганизмы, вызывающие воспаления легких, или пневмонию. Эвери смешивал два вида пневмококков, один из которых вызывал заболевание, а другой – нет. Предварительно болезнетворные клетки убивали, и затем добавляли к ним пневмококки, которые не вызывали заболевание.

Рис. 17. Опыты Эвери и Гриффитса

Результаты опытов были удивительны. Некоторые живые клетки после контакта с убитыми научились вызывать болезнь. Эвери удалось выяснить природу вещества, участвующего в процессе передачи информации от мертвых клеток живым (рис. 17). Этим веществом оказалась молекула ДНК.

Домашнее задание

1. Какие вещества называют нуклеиновыми кислотами?

2. Что такое ДНК? Какова роль ДНК в жизнедеятельности живых организмов?

3. В каких органоидах клетки содержится ДНК? Почему ДНК содержится в этих органоидах?

4. Какие химические особенности ДНК позволяют ей выполнять её биологические функции?

5. Что такое нуклеотид? Из чего он состоит?

6. Какие уровни структурной организации ДНК вам известны?

7. Какие возможности перед наукой и практикой были открыты благодаря установлению структуры и функций ДНК?

8. Почему за модель двойной спирали ДНК Д. Уотсон и Ф. Крик были награждены Нобелевской премией?

9. Какие ученые внесли вклад в изучение ДНК? Что они установили?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

2. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

3. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

4. Интернет-портал MK.ru (Источник).

5. Интернет-портал Habrahabr.ru (Источник).

6. Интернет-портал Nobelprize.org (Источник).

7. YouTube (Источник).

8. Всякая всячина (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. – 5-е изд., стереотип. – Дрофа, 2010. – 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник

Много людей использует термин ДНК. Но статей, нормально описывающих, как она работает почти нет (понятных не биологам). Я уже описывал в общих чертах устройство клетки и самые основы ее энергетических процессов. Теперь перейдем к ДНК.
ДНК хранит информацию. Это знают все. Но вот как она это делает?

Начнем с того, где она в клетке хранится. Примерно 98% хранится в ядре. Остальное в митохондриях и хлоропластах (в этих ребятах протекает фотосинтез). ДНК — это огромный полимер, состоящий из мономерных звеньев. Выглядит примерно так.

Что мы тут видим? Во-первых ДНК — двухцепочечная молекула. Почему это так важно — чуть позже. Далее мы видим синие пятиугольники. Это молекулы дезоксирибозы (такой сахар, чуть меньше глюкозы. От рибозы отличается отсутствием одной OH группы, что придает стабильности молекуле ДНК, в отличие от РНК, в которой используется рибоза. Дальше, для простоты опущу приставку дезокси и буду просто говорить рибоза, да простят нас щепетильные товарищи). Маленькие кружкИ — остатки фосфорной кислоты. Ну и собственно есть азотистые основания. Всего их 5, но в ДНК в основном встречаются 4. Это Аденин, Гуанин, Тимин и Цитозин. То есть, есть рибоза с которой связано азотистое основание. Вместе они образуют так называемые нуклеозиды, которые связываются друг с другом с помощью остатков фосфорной кислоты. Таким образом мы получаем длинную цепь, состоящую из мономеров. Теперь посмотрите на увеличенную левую цепь. Видите C и G соединены тремя пунктирными линиями, а T и A двумя. Что это значит? Да, ДНК состоит из двух цепей, но что удерживает их вместе? Есть такая штука, как водородная связь. Выглядит примерно так. На атомы кислорода (O) и азота (N) формируется частичный отрицательный заряд, а на водороде (H) — положительный. Это приводит к формированию слабых связей.

Связи действительно очень слабые. Их энергия может быть в 200 раз ниже энергии ковалентных связей (образуются за счет перекрытия пары электронных облаков, например связь в молекуле CO2). Однако таких связей много. В каждой нашей клетке ДНК цепи связаны почти 16 миллиардами слабых связей, не мало, согласны?

Но вернемся к числу связей между основаниями. Цитозин и Гуанин связаны тремя связями, а Аденин и Тимин — двумя. Это приводит к тому, что Г и Ц связанны куда прочнее, чем А и Т. Некоторым организмам нужна особая стабильность связей ДНК, например живущим при высоких температурах. При нагревании ДНК содержащая больше ГЦ пар более стабильна. Так что хочешь жить в гейзере — имей много ГЦ пар. Хотя последние исследования говорят, что явной связи между GC составом (% ГЦ пар от всех пар) и температурой обитания нет. Стоит сказать, что варьирует он сильно. Так у Candidatus Carsonella ruddii PV (внутриклеточный эндосимбионт) он примерно 16%, у нас с вами почти 41%, а у Anaeromyxobacter K (бактерия вполне себе средних размеров) достигает 75%.

Тут вы можете видеть связь GC состава с размером генома бактерий. Mb — миллион пар нуклеотидов. Показатель довольно вариативный. Его, кстати, часто юзают как фичу при обучении различного рода классификаторов. Сам недавно писал классификатор для распознания патогенов на основе сырых данных секвенирования и оказалось, что GC состав даже по одному риду вполне себе можно использовать.

Пока не забыл. Почему важно, что ДНК двухцепочечная? На основе одной цепи можно восстановить другую. Если в одной цепи поврежден кусок напротив последовательности Аденин-Аденин-Цитозин, то мы точно знаем, что до повреждения там был Тимин-Тимин-Гуанин. Таким образом наличие второй цепи позволяет надежней хранить информацию.

Читайте также:  Какие сведения содержаться в кадастровом паспорте

Круто! Теперь вернемся к самой молекуле ДНК. Это цепочка из 4х типов звеньев. Однако насколько длинная? У Candidatus Carsonella ruddii PV уже упомянутого выше всего 160 000 нуклеотидов. У нас с вами 3.2 миллиарда (в гаплоидной клетке, то есть с одним набором хромосом. У большинства наших клеток их два). Кажется много, да? На самом деле нет. У одноклеточной амебы (Amoeba dubia) он примерно 670 миллиардов пар нуклеотидов. Кажется что это бесконечно длинная цепочка, поэтому давайте переведем размер в любимые нам метры. Если все наши хромосомы (их 46, не забываем; 23 по две копии на каждую) развернуть и вытянуть в одну линию, получится примерно 2х метровая цепочка. ДНК одной амебы хватит, чтоб опоясать футбольный стадион. Но к чему я веду? Ядро, в котором ДНК хранится не очень большое. У нас оно в среднем диаметром в 6 мкм. Не очень то много, если хочешь свернуть 2х метровую нить, пусть и очень тонкую. Причем нужно не просто запихать нить в ядро. Нужно свернуть таким образом, чтобы в любой момент можно было обеспечить доступ к любому ее участку. Задача сложная. И с ней успешно справляются специализированные белки. Они создают ряд спиралей и петель, которые обеспечивают все более и более высокие уровни упаковки и не до допускают спутывания ДНК в гордиев узел. Давайте поговорим о том, как она упаковывается.

Сразу скажу, упаковывается она очень по разному. Но если откинуть экзотику, то остается два способа. Первый характерен для бактерий, второй для эукариот (или иначе ядерных).

Упаковка ДНК у бактерий

Начнем с братьев наших меньших. Бактерии сами по себе обладают не очень большим геномом, в среднем от 1 до 5 миллионов пар нуклеотидов. Наиболее характерное их отличия от нас в том, что у них нет ядра и ДНК плавает в клетке. Не совсем плавает, оно частично прикреплено к клеточной мембране и тоже свернуто, но не так сильно как у нас.

Второе. Бактериальная ДНК чаще всего кольцевая. Так ее проще копировать (нет концов, которые могут потеряться при копировании и не нужно придумывать механизмы сохранения концов). Обычно такое кольцо одно, но у некоторых бактерий их может быть 2 или 3. Есть еще кольца поменьше (от пары тысяч до пары сотен тысяч остатков).Имя им плазмиды, и это вообще отдельная история.

Вернемся к упаковке ДНК. ДНК упаковывают белки-гистоны (есть еще гистоноподобные белки). ДНК это дезоксирибонуклеиновая кислота. Кислота. Это значит что она отрицательно заряжена (за счет остатков фосфорной кислоты). Поэтому белки, связывающие ее положительно заряжены. Таким образом они могут связываются с ДНК. ДНК бактерий вместе с белками ее упаковывающими формируют нуклеоид, при этом на долю ДНК приходится 80% от его массы. Выглядит это примерно так. То есть кольцевая ДНК делится на домены по 40 тысяч пар нуклеотидов. Затем происходит скручивание. Внутри доменов тоже происходит скручивания, но его степень в разных доменах отличается. В среднем степень упаковки бактериальной ДНК варьирует от сотни до тысячи раз.

Есть еще прикольное видео.

Упаковка ДНК у эукариот

Тут все куда интересней. Наше ДНК хорошо упакована и спрятана внутри ядра. И она куда эффективней упакована, нежели у бактерий. Во время митоза (деление клетки) размер 22й хромосомы составляет 2 мкм. Если ее распутать и вытянуть, она будет уже 1,5 см. Что соответствует степени упаковки в 10 000 раз. Это около максимальная степень упаковки нашей ДНК. Во время деления нужно максимально упаковать ДНК, что бы эффективно разделить ее между дочерними клетками. В обыденной жизни степень компактизации составляет примерно 500 раз. Со слишком упакованной ДНК сложно считывать информацию.

Есть несколько уровней упаковки ДНК эукариот

Первый — нуклеосомный уровень. 8 белков-гистонов формируют частицу на которую наматывается ДНК. Затем еще один белок ее фиксирует. Выглядит примерно так.

Получаются своего рода бусы. Плотность упаковки благодаря этому возрастает в 7-10 раз. Далее нуклеосомы упаковываются в фибрилы. Немного похоже на солениод. Тут суммарная степень упаковки может достигать 60 раз.

Следующий этап компактизации ДНК связан с образованием петлеобразных структур, которые называются хромомерами. Фибрила разбита на участки по 10 — 80 тысяч пар азотистых оснований. В местах разбивки находятся глобулы негистоновых белков. ДНК — связывающие белки узнают глобулы негистоновых белков и сближают их. Образуется устье петли. Средняя длина петли включает примерно 50 тысяч оснований. Эту структуру называют интерфазной хромонемой. И именно в ней наше ДНК находится большую часть времени. Уровень упаковки здесь достигает 500-1500 раз.

При необходимости клетка может еще больше компактизировать генетический материал. Идет образование более крупных петель из хромомерной фибриллы. Эти петли в свою очередь образуют новые петли (петли в петли… и это не вязание). Которые в конечном счете формируют хромосому.

В целом процесс упаковки можно описать примерно так.

В итоге из нитей ДНК мы получаем, при делении, суперскрученные структуры, которые можно увидеть под микроскопом. Их мы и зовем хромосомами.

Собственно вещество хромосом зовется хроматином. И степень его упаковки отличается в зависимости от участка хромосомы. Есть эухроматин и гетерохроматин. Эухроматин это довольно расплетенная область хроматина, в ней ДНК находится на хромомерном уровне (упаковка в 500 — 1000 раз). Здесь происходит активное считывание информации. Например, если сейчас клетка активно синтезирует белок А, то область ДНК, его кодирующая будет в состоянии эухроматина, что бы ферменты, «читающие» ДНК могли до нее добраться. Гетерохроматин же содержит ту часть ДНК, которая клетке не особо нужна сейчас. То есть ДНК максимально плотно упакована, дабы не путаться под ногами. В зависимости от потребностей клетки одни области хроматина могут частично расплетаться, в то время как другие — сплетаться. Таким образом еще и осуществляется регуляция (очень грубое приближение), ведь к скрученной области не добраться, и значит ее не прочитать.

Собственно пока это все. Мы обсудили как хранится носитель информации. Сделаем небольшую паузу и через пару дней поговорим о самом кодировании информации.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

Источник