Какими свойством обладает величина угла
Создал: Максим Стародуб 7б
Https://vk.com/maxstrix324
Билет №1
Параллельные прямые. Основное свойство прямой.
Две прямые называют параллельными, если они не пересекаются.
Две прямые, перпендикулярные третьей прямой, параллельны.
Если две прямые параллельны третьей прямой, то они параллельны.
Касательная к окружности. Задача о двух касательных, проведенных из одной точки.
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.
Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.
Билет №2
Пересекающиеся прямые. Основное свойство прямой.
Две прямые, имеющие общую точку, называют пересекающимися.
Любые две пересекающиеся прямые имеют только одну общую точку.
Теоремма о сумме углов треугольника. Следствие.
Сумма углов треугольника равна 1800.
Билет №3
Отрезок. Его элементы. Основное свойство длины отрезка.
Отрезок – прямая между точками.
Если точка С является внутренней точкой отрезка АВ, то отрезок АВ равен сумме отрезков АС и СВ, т.е. АВ=АС+СВ
Прямоугольный треугольник. Свойства прямоугольного треугольника.
Треугольник называют прямоугольным, если один из его углов прямой.
Сумма острых углов треугольника равна 90 градусов
Гипотенуза прямоугольного треугольника больше каждого их катетов
Катет, лежащий против угла 30о, равен половине гипотенузы.
Две высоты прямоугольного треугольника совпадают с его катетами.
Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.
Билет №4
Луч. Его элементы. Дополнительный луч.
часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё. Любая точка на прямой разделяет прямую на два луча
Элементы — точка и вектор
Дополнительные лучи (ОА и ОВ) — различные лучи одной и той же прямой, имеющие общее начало О.
Окружность и круг. Их элементы. Некоторые свойства окружности.
Окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности. Это расстояние называется радиус и в записях обозначается буквой R .
Центр окружности обозначают буквой O.
Окружность разделяет плоскость на две части, внутреннюю и внешнюю. Внутренняя часть, включающая саму окружность, называется кругом. (Наведите курсор на рисунок.)
Точка O — это центр и круга и окружности
Круг — множество точек плоскости, удаленных от заданной точки этой плоскости (центр круга — o) на расстояние, не превышающее заданное (радиус круга)
Билет №5
Угол. Его элементы. Виды углов(по градусной мере).
Градусной мерой угла является число больше нуля, которое показывает, какое число раз градус и его части — минута и секунда — помещаются в этом угле, т.е. градусная мера — величина, которая отражает число градусов, минут и секунд между двумя сторонами угла.
Угол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла). Плоскость, содержащая обе стороны угла, делится углом на две области.
Элементы угла — вершина и 2 стороны
Перпендекулярные прямые. Перпендикуляр. Расстояние от точки до прямой.
Две прямые, образующие при пересечении прямые углы, называют перпендикулярными.
Перпендикуляр это отрезок, опущенный на прямую под углом 90 градусов (или иначе называемым «прямым углом»)
Расстояние от точки до прямой на плоскости — это кратчайшее расстояние от точки до прямой в евклидовой геометрии. Расстояние равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой.
Билет №6
Угол. Основное свойство величины угла.
Угол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла). Плоскость, содержащая обе стороны угла, делится углом на две области.
ВОПРОСЫ
1. Какой угол называют развернутым?
2. В каких единицах измеряют углы?
Углы измеряются в градусах.
3. Какова градусная мера развернутого угла?
Градусная мера развернутого угла равна 180º.
4. Что означает измерить угол?
Измерить угол — значит подсчитать, сколько единичных углов в нем помещается.
5. Как называется прибор, который используют для измерения углов?
Прибор, который используют для измерения углов, называется транспортир.
6. Расскажите как пользоваться транспортиром.
7. Какие градусные меры имеют равные углы?
Равные углы имеют равные градусные меры.
8. Какой из двух неравных углов считают большим?
Из двух неравных углов большим считается тот, градусная мера которого больше.
9. Каким свойством обладает величина угла?
10. Какой угол называют острым?
Острый угол — угол, градусная мера которого меньше 90º.
11. Какой угол называют прямым?
Прямой угол — угол, градусная мера которого равна 90º.
12. Какой угол называют тупым?
Тупой угол — угол, градусная мера которого больше 90º, но меньше 180º.
13. На какие углы делит развернутый угол его биссектриса?
Биссектриса развернутого угла делит его на два угла, градусная мера каждого из которых равна 90º.
14. В каких случаях говорят, что от данного луча отложен данный угол?
РЕШАЕМ УСТНО
1. Назовите два числа, одно из которых: 1) на 27 больше другого; 3) в 7 раз меньше другого; 2) на 15 меньше другого; 4) в 3 раза больше другого.
2. Часы спешат на 10 мин и сейчас показывают время 10 ч 8 мин. Который час на самом деле?
На самом деле 9 ч 58 мин.
3. Часы отстают на 7 мин и сейчас показывают время 16 ч 55 мин. Который час на самом деле?
На самом деле 17 ч 2 мин.
4. Какие из следующих уравнений не имеют корней:
5. Для озеленения улицы длиной 3 км на одной из ее сторон посадили деревья на расстоянии 20 м друг от друга. Сколько деревьев было посажено? Чему равно расстояние между первым и пятым деревьями?
УПРАЖНЕНИЯ
296. Начертите: 1) острый угол ЕFC; 2) прямой угол ОRT; 3) тупой угол D. 4) развернутый угол КАР.
297. Найдите на рисунке 93 острые, тупые и прямые углы.
298. Какие из данных углов острые, тупые, прямые, развернутые:
299. Найдите, пользуясь транспортиром, градусные меры углов, изображенных на рисунке 94. Определите вид каждого угла.
300. Найдите, пользуясь транспортиром, градусные меры углов, изображенных на рисунке 95. Определите вид каждого угла.
301. Начертите угол, градусная мера которого равна: 1) 380; 2) 1240; 3) 920; 4) 900; 5) 870; 6) 540; 7) 1700; 8) 650. Определите вид каждого угла.
302. Проведите луч. Отложите от этого луча угол, градусная мера которого равна: 1) 400; 2) 1300; 3) 680; 4) 1640. Определите вид каждого из построенных углов.
303. На рисунке 96 СМК = 1320, а угол АМК — развернутый. Вычислите величину угла АМС.
304. На рисунке 97 угол АОК — прямой, РОС = 540, а угол СОК — развернутый. Вычислите величину угла АОР.
305. Какой из углов, изображенных на рисунке 98, наибольший? Наименьший?
306. Начертите угол СDЕ, равный 1520. Лучом DА разделите этот угол на два угла так, чтобы СDА = 980. Вычислите величину угла АDE.
307. Начертите угол АВС, равный 1060. Лучом ВD разделите этот угол на два угла так, чтобы АВD = 340. Вычислите величину угла DВС.
308. Из вершины прямого угла ВОМ (рис. 99) проведены два луча ОА и ОС так, что ВОС = 740, АОМ = 620. Вычислите величину угла АОС.
309. Из вершины развернутого угла АСР (рис. 100) проведены два луча СТ и СF так, что АСF = 1580, ТСР = 1340. Вычислите величину угла ТСF.
310. Верно ли утверждение: 1) угол, который меньше тупого, — острый; 2) угол, который меньше развернутого, — тупой; 3) половина тупого угла — острый угол; 4) сумма градусных мер двух острых углов больше 900; 5) угол, который больше прямого, — тупой.
311. Найдите градусную меру угла между стрелками часов, если они показывают: 1) 3 ч; 2) 6 ч; 3) 4 ч; 4) 11 ч; 5) 7 ч.
312. Луч ВК является биссектрисой угла СВD, АВК = 1460 (рис. 101, ). Вычислите градусную меру угла СВD.
313. Луч ОА является биссектрисой угла СОМ, СОМ = 540 (рис. 101, б). Вычислите градусную меру угла ВОА.
314. Проведите три прямые, пересекающиеся в одной точке. Запишите все развернутые углы, образовавшиеся при этом.
315. Проведите шесть прямых, пересекающихся в одной точке. Верно ли, что среди образовавшихся при этом углов есть угол, градусная мера которого меньше 310?
УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ
316. Заполните цепочку вычислений:
317. Верно ли неравенство (а + 253)7(9 864 — а) : 4 при а= 124?
318. В четыре стакана помещается столько же молока, сколько и в банку. В стакан и банку помещается 1 кг 200 г молока. Сколько граммов молока помещается в стакан?
319. Длина границы России с Китаем, Монголией и Казахстаном составляет 15 293 км. Найдите длину границы России с каждым из этих государств, если длина границы с Китаем и Монголией равна 7 694 км, а с Китаем и Казахстаном — 11 808 км.
ЗАДАЧА ОТ МУДРОЙ СОВЫ
320. Улитка за день поднимается вверх по столбу на 3 м, а за ночь съезжает по нему на 2 м вниз. На какой день она доберется до вершины столба, высота которого равна 20 м?
Теле́сный у́гол — часть пространства, которая является объединением всех лучей, выходящих из данной точки (вершины угла) и пересекающих некоторую поверхность (которая называется поверхностью, стягивающей данный телесный угол). Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой Ω.
Телесный угол измеряется отношением площади той части сферы с центром в вершине угла, которая вырезается этим телесным углом, к квадрату радиуса сферы:
Телесные углы измеряются отвлечёнными (безразмерными) величинами. Единицей измерения телесного угла в системе СИ является стерадиан, равный телесному углу, вырезающему из сферы радиуса r поверхность с площадью r2. Полная сфера образует телесный угол, равный 4π стерадиан (полный телесный угол), для вершины, расположенной внутри сферы, в частности, для центра сферы; таким же является телесный угол, под которым видна любая замкнутая поверхность из точки, полностью охватываемой этой поверхностью, но не принадлежащей ей. Кроме стерадианов, телесный угол может измеряться в квадратных градусах, квадратных минутах и квадратных секундах, а также в долях полного телесного угла.
Телесный угол имеет нулевую физическую размерность.
Двойственный телесный угол к данному телесному углу Ω определяется как
угол, состоящий из лучей, образующих с любым лучом угла Ω неострый угол.
Коэффициенты пересчёта единиц телесного угла.
Стерадиан | Кв. градус | Кв. минута | Кв. секунда | Полный угол | |
---|---|---|---|---|---|
1 стерадиан = | 1 | (180/π)² ≈ ≈ 3282,806 кв. градусов | (180×60/π)² ≈ ≈ 1,1818103⋅107 кв. минут | (180×60×60/π)² ≈ ≈ 4,254517⋅1010 кв. секунд | 1/4π ≈ ≈ 0,07957747 полного угла |
1 кв. градус = | (π/180)² ≈ ≈ 3,0461742⋅10−4 стерадиан | 1 | 60² = = 3600 кв. минут | (60×60)² = = 12 960 000 кв. секунд | π/(2×180)² ≈ ≈ 2,424068⋅10−5 полного угла |
1 кв. минута = | (π/(180×60))² ≈ ≈ 8,461595⋅10−8 стерадиан | 1/60² ≈ ≈ 2,7777778⋅10−4 кв. градусов | 1 | 60² = = 3600 кв. секунд | π/(2×180×60)² ≈ ≈ 6,73352335⋅10−9 полного угла |
1 кв. секунда = | (π/(180×60×60))² ≈ ≈ 2,35044305⋅10−11 стерадиан | 1/(60×60)² ≈ ≈ 7,71604938⋅10−8 кв. градусов | 1/60² ≈ ≈ 2,7777778⋅10−4 кв. минут | 1 | π/(2×180×60×60)² ≈ ≈ 1,87042315⋅10−12 полного угла |
Полный угол = | 4π ≈ ≈ 12,5663706 стерадиан | (2×180)²/π ≈ ≈ 41252,96125 кв. градусов | (2×180×60)²/π ≈ ≈ 1,48511066⋅108 кв. минут | (2×180×60×60)²/π ≈ ≈ 5,34638378⋅1011 кв. секунд | 1 |
Вычисление телесных углов[править | править код]
Для произвольной стягивающей поверхности S телесный угол Ω, под которым она видна из начала координат, равен
где — сферические координаты элемента поверхности — его радиус-вектор, — единичный вектор, нормальный к
Свойства телесных углов[править | править код]
- Полный телесный угол (полная сфера) равен 4π стерадиан.
- Сумма всех телесных углов, двойственных к внутренним телесным углам выпуклого многогранника, равна полному углу.
Величины некоторых телесных углов[править | править код]
где — смешанное произведение данных векторов, — скалярные произведения соответствующих векторов, полужирным шрифтом обозначены векторы, нормальным шрифтом — их длины. Используя эту формулу, можно вычислять телесные углы, стянутые произвольными многоугольниками с известными координатами вершин (для этого достаточно разбить многоугольник на непересекающиеся треугольники).
- Телесный угол двугранного угла в стерадианах равен удвоенному значению двугранного угла в радианах.
- Телесный угол трёхгранного угла выражается по теореме Люилье через его плоские углы при вершине, как:
где — полупериметр.
Через двугранные углы телесный угол выражается как:
Телесный угол при вершине наклонного кругового конуса
Телесный угол, под которым виден круг радиусом R из произвольной точки пространства (то есть телесный угол при вершине произвольного кругового конуса, не обязательно прямого) вычисляется с использованием полных эллиптических интегралов 1-го и 3-го рода[1]:
при
при где и — полные нормальные эллиптические интегралы Лежандра 1-го и 3-го рода, соответственно;
— расстояние от центра основания конуса до проекции вершины конуса на плоскость основания;
— высота конуса;
— длина максимальной образующей конуса;
Литература[править | править код]
- Hopf H. Selected Chapters of Geometry // ETH Zürich lecture, pp. 1—2, 1940.
- Van Oosterom A., Strackee J. The Solid Angle of a Plane Triangle (англ.) // IEEE Transactions on Biomedical Engineering. — 1983. — Vol. 30. — P. 125—126. — ISSN 0018-9294. — doi:10.1109/TBME.1983.325207. — PMID 6832789. [исправить]
- Weisstein E. W. Solid Angle. From MathWorld—A Wolfram Web Resource.
- Gardner R.P., Verghese K. On the solid angle subtended by a circular disc (англ.) // Nuclear Instruments and Methods. — 1971. — Vol. 93. — P. 163—167. — doi:10.1016/0029-554X(71)90155-8. — Bibcode: 1971NucIM..93..163G. [исправить]
См. также[править | править код]
- Угол
- Двугранный угол
- Трёхгранный угол
- Многогранный угол