Какими свойствами обладают жидкие тела

Какими свойствами обладают жидкие тела thumbnail

Выделяют три агрегатных состояния веществ: жидкость, вода и газ. Все они различаются по своим свойствам. Особое место в этом списке занимают жидкости. В отличие от твердых тел, в жидкостях молекулы не расположены упорядочено. Жидкость – это особое состояние вещества, являющееся промежуточным между газом и твердым телом. Вещества в этом виде могут существовать только при строгом соблюдении интервалов определенных температур. Ниже этого интервала жидкое тело превратится в твердое, а выше – в газообразное. При этом границы интервала напрямую зависят от давления.

жидкие тела примеры

Вода

Одним из основных примеров жидкого тела является вода. Несмотря на принадлежность к данной категории, вода может принимать форму твердого тела или газа – в зависимости от температуры окружающей среды. В процессе перехода из состояния жидкости в твердое, молекулы обычного вещества сжимаются. Но вода ведет себя совершенно иначе. При замерзании ее плотность снижается, и вместо того, чтобы тонуть, лед выплывает на поверхность. Вода в своем обычном, текучем, состоянии обладает всеми свойствами жидкости – у нее всегда имеется конкретный объем, однако, нет определенной формы.

Поэтому вода всегда сохраняет тепло под поверхностью льда. Даже если температура окружающей среды составляет -50°С, то подо льдом она все равно будет составлять около нуля. Однако в начальной школе можно не углубляться в подробности свойств воды или других веществ. В 3 классе примеры жидких тел можно приводить самые простые – и в этот список желательно включить воду. Ведь ученик начальной школы должен иметь общие представления о свойствах окружающего мира. На данном этапе достаточно знать, что вода в ее обычном состоянии является жидкостью.

Натяжение поверхности — свойство воды

Вода обладает большим, чем другие жидкости, показателем натяжения поверхности. Благодаря этому свойству образуются капли дождя, а, следовательно, и поддерживается круговорот воды в природе. Иначе пары воды не могли бы так легко превратиться в капли и пролиться на поверхность земли в виде дождя. Вода, действительно, является примером жидкого тела, от которого напрямую зависит возможность существования живых организмов на нашей планете.

Поверхностное натяжение объясняется тем, что молекулы жидкости притягиваются друг к другу. Каждая из частиц стремится окружить себя другими и уйти с поверхности жидкого тела. Именно поэтому мыльные и образующиеся при кипении воды пузыри стремятся принять жидкую форму – при этом объеме минимальной толщиной поверхности может обладать только шар.

какие бывают жидкие тела

Жидкие металлы

Однако не только привычные для человека вещества, с которым он имеет дело в повседневности, принадлежат к классу жидких тел. Среди этой категории немало различных элементов периодической системы Менделеева. Примером жидкого тела также является ртуть. Это вещество широко применяется в изготовлении электротехнических приборов, металлургии, химической промышленности.

Ртуть является жидким, блестящим металлом, испаряющимся уже при комнатной температуре. Она способна растворять серебро, золото и цинк, образуя при этом амальгамы. Ртуть является примером того, какие бывают жидкие тела, относящиеся к категории опасных для жизни человека. Ее пары токсичны, опасны для здоровья. Поражающее действие ртути проявляется, как правило, через некоторое время после контакта отравления.

Металл под названием цезий также относится к жидкостям. Уже при комнатной температуре он находится в полужидкой форме. Цезий на вид представляет собой вещество золотисто-белого оттенка. Данный металл немного похож на золото по цвету, однако, светлее его.

жидкие тела примеры 3 класс

Серная кислота

Примером того, какие бывают жидкие тела, также являются и практически все неорганические кислоты. К примеру, серная кислота, на вид представляющая собой тяжелую маслянистую жидкость. У нее нет ни цвета, ни запаха. При нагревании она становится очень сильным окислителем. На холоде она не вступает во взаимодействие с металлами – например, железом и алюминием. Данное вещество проявляет свои характеристики только в чистом виде. Разбавленная серная кислота не проявляет окислительных свойств.

Свойства

Какие жидкие тела существуют помимо перечисленных? Это кровь, нефть, молоко, минеральное масло, алкоголь. Их свойства позволяют этим веществам легко принимать форму тары. Как и другие жидкости, эти вещества не теряют своего объема, если перелить их из одного сосуда в другой. Какие же еще свойства присущи каждому из веществ в данном состоянии? Жидкие тела и их свойства хорошо изучены физиками. Рассмотрим их основные характеристики.

Текучесть

Одна из главнейших характеристик любого тела данной категории – это текучесть. Под данным термином понимается способность тела принимать различную форму, даже если не него оказывается относительно слабое воздействие извне. Именно благодаря данному свойству каждая жидкость может разливаться струями, разбрызгиваться по окружающей поверхности каплями. Если бы тела данной категории не обладали текучестью, было бы невозможным налить воду из бутылки в стакан.

Читайте также:  Каким полезным свойством обладает яблоко

При этом данное свойство выражается у разных веществ в различной степени. Например, мед меняет форму очень медленно по сравнению с водой. Данную характеристику называют вязкостью. Это свойство зависит от внутреннего строения жидкого тела. Например, молекулы меда больше похожи на ветви дерева, а молекулы воды, скорее, напоминают шарики с небольшими выпуклостями. При движении жидкости частицы меда будто «цепляются друг за друга» — именно этот процесс и придает ему большую вязкость, нежели другим типам жидкостей.

какие жидкие тела

Сохранение формы

Нужно помнить и о том, что о каком бы примере жидких тел ни шла речь, они меняют только форму, но не меняют объем. Если налить воды в мензурку, и перелить ее в другую емкость, данная характеристика не изменится, хотя и само тело примет форму нового сосуда, в который его только что перелили. Свойство сохранения объема объясняется тем, что между молекулами действуют как силы взаимного притяжения, так и отталкивающие. Нужно отметить, что жидкости практически невозможно сжать посредством внешнего воздействия за счет того, что они всегда принимают форму контейнера.

жидкие и твердые тела

Жидкие и твердые тела отличаются тем, что последние не подчиняются закону Паскаля. Напомним, что данное правило описывает поведение всех жидкостей и газов, и заключается в их свойстве передавать оказываемое на них давление во все стороны. Однако нужно отметить, что те жидкости, которые обладают меньшей вязкостью, делают это быстрее, чем более вязкие жидкие тела. Например, если оказать давление на воду или спирт, то оно распространится достаточно быстро.

жидкие тела и их свойства

В отличие от этих веществ, давление на мед или жидкое масло будет распространяться медленнее, однако, так же равномерно. В 3 классе примеры жидких тел можно приводить без указания их свойств. Более детальные знания школьникам понадобятся в старших классах. Однако если ученик подготовит дополнительный материал, это может поспособствовать получению более высокой оценки на уроке.

Источник

Жидкостью называют вещество, которое находится в агрегатном состоянии, являющимся промежуточным между твердым и газообразным. При этом ее состояние, как и в случае с твердыми телами, является конденсируемым, то есть предполагает связь между частицами (атомами, молекулами, ионами). Жидкость обладает свойствами, кардинально отличающими ее от веществ, которые находятся в других агрегатных состояниях. Главное из них – способность к многократному изменению формы под воздействием механических напряжений без потери объема. Сегодня мы с вами выясним, какими свойствами обладают жидкости, и что они вообще собой представляют.

Общая характеристика

Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость – только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой – не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.

Свойства жидкостей

Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше – в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.

Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.

Рассмотрим основные свойства жидкостей.

Текучесть

От других веществ жидкость отличается, в первую очередь, текучестью. Если к ней приложить внешнюю силу, в направлении ее приложения возникает поток частиц. Таким образом, при воздействии внешних неуравновешенных сил, жидкость не способна к сохранению формы и относительного расположения частиц. По этой же причине, она принимает форму сосуда, в который попадает. В отличие от твердых пластичных тел, жидкости не имеют предела текучести, то есть текут при малейшем выходе из равновесного состояния.

Читайте также:  Какие свойства у ивы

Физические свойства жидкостей

Сохранение объема

Одним из характерных физических свойств жидкостей является способность к сохранению объема при механическом воздействии. Их чрезвычайно трудно сжать из-за высокой плотности молекул. Согласно закону Паскаля, давление, которое производится на жидкость, заключенную в сосуд, без изменения передается в каждую точку ее объема. Наряду с минимальной сжимаемостью, эта особенность широко используется в гидравлике. Большинство жидкостей при нагревании увеличивается в объеме, а при охлаждении – уменьшается.

Вязкость

Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.

Свободная поверхность и поверхностное натяжение

Если взглянуть на каплю воды, которая лежит на ровной поверхности, то можно увидеть, что она закруглена. Обусловлено это такими свойствами жидкостей, как образование свободной поверхности и поверхностное натяжение. Способность жидкостей к сохранению объема обуславливает образование свободной поверхности, которая является не иначе как поверхностью раздела фаз: жидкой и газообразной. При соприкосновении этих фаз одного и того же вещества возникают силы, направленные на уменьшение площади плоскости раздела. Их называют поверхностным натяжением. Граница раздела фаз представляет собой упругую мембрану, стремящуюся к стягиванию.

Общие свойства жидкостей

Поверхностное натяжение объясняется также притяжением молекул жидкости друг к другу. Каждая молекула стремится «окружить» себя другими молекулами и уйти с границы раздела. Из-за этого поверхность стремительно уменьшается. Этим объясняется тот факт, что мыльные пузыри и пузыри, образующиеся при кипении, стремятся принять сферическую форму. Если на жидкость будет действовать только сила поверхностного натяжения, она непременно примет такую форму.

Небольшие объекты, плотность которых превышает плотность жидкости, способны оставаться на ее поверхности за счет того, что сила, препятствующая увеличению площади поверхности, больше силы тяготения.

Испарение и конденсация

Испарением называют постепенный переход вещества из жидкого состояния в газообразное. В процессе теплового движения часть молекул покидают жидкость, проходя через ее поверхность, и преобразуются в пар. Параллельно с этим другая часть молекул, наоборот, переходит из пара в жидкость. Когда количество соединений, покинувшее жидкость, превышает количество соединений, пришедших в нее, имеет место процесс испарения.

Химические свойства жидкостей

Конденсацией называют процесс, обратный испарению. Во время конденсации жидкость получает из пара больше молекул, чем отдает.

Оба описанных процесса являются неравновесными и могут продолжаться до тех пор, пока не установится локальное равновесие. При этом жидкость может полностью испариться или же вступить со своим паром в равновесие.

Кипение

Кипением называют процесс внутренних преобразований жидкости. При повышении температуры до определенного показателя, давление пара превышает давление внутри вещества, и в нем начинают образовываться пузырьки. В условиях земного притяжения они всплывают вверх.

Смачивание

Смачиванием называют явление, которое возникает при контакте жидкости с твердым веществом в присутствии пара. Таким образом, оно происходит на границе раздела трех фаз. Это явление характеризует «прилипание» жидкого вещества к твердому, и его растекание по поверхности твердого вещества. Бывает три вида смачивания: ограниченное, полное и несмачивание.

Смешиваемость

Основные физические свойства жидкостей

Характеризует способность жидкостей растворяться друг в друге. Примером смешиваемых жидкостей могут выступить вода и спирт, а несмешиваемых – вода и масло.

Диффузия

Когда две смешиваемых жидкости пребывают в одном сосуде, благодаря тепловому движению молекулы начинают преодолевать границу раздела, и жидкости постепенно смешиваются. Данный процесс называется диффузией. Он может происходить и в веществах, которые находятся в иных агрегатных состояниях.

Перегрев и переохлаждение

Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.

Читайте также:  Какие свойства пульса определяют уровень артериального давления

Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.

Жидкость обладает свойствами

Волны на поверхности

Если нарушить равновесие участка поверхности жидкости, то тогда она, под действием возвращающих сил, будет двигаться обратно к равновесию. Это движение не ограничивается одним циклом, а превращается в колебания и распространяется на другие участки. Так получаются волны, которые можно наблюдать на поверхности любой жидкости.

Когда в качестве возвращающей силы выступает преимущественно сила тяжести, волны называют гравитационными. Их можно видеть на воде повсеместно. Если же возвращающая сила формируется преимущественно из силы поверхностного натяжения, то волны называют капиллярными. Теперь вы знаете, какое свойство жидкостей обуславливает знакомое всем волнение воды.

Волны плотности

Жидкость чрезвычайно тяжело сжимается, тем не менее, с изменением температуры, ее объем и плотность все-таки меняются. Происходит это не мгновенно: при сжатии одного участка, другие сжимаются с запаздыванием. Таким образом, внутри жидкости распространяются упругие волны, которые получили название волны плотности. Если по мере распространения волны плотность меняется слабо, то ее называю звуковой, а если достаточно сильно – ударной.

Мы с вами познакомились с общими свойствами жидкостей. Все основные характеристики зависят уже от типа и состава жидкостей.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Какое свойство жидкостей

Изучение

Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.

Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.

Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором – их движение.

Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.

Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.

Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика – подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.

В заключение

Сегодня мы с вами познакомились с общими физическими свойствами жидкостей. Также мы узнали, что вообще представляют собой такие вещества, и как они классифицируются. Что касается химических свойств жидкости, то они напрямую зависят от ее состава. Поэтому рассматривать их стоит отдельно для каждого вещества. Какое свойство жидкости важно, а какое нет — ответить сложно. Здесь все зависит от задачи, в контексте которой эта жидкость рассматривается.

Источник