Какими свойствами обладают жидкие кристаллы

Какими свойствами обладают жидкие кристаллы thumbnail

Шлирен-текстура[1] нематического жидкого кристалла, наблюдаемая при помещении его между двумя поляроидами, например в оптическом поляризационном микроскопе

Жи́дкие криста́ллы (сокращённо ЖК; англ. liquid crystals, LC) — это фазовое состояние, в которое переходят некоторые вещества при определённых условиях (температура, давление, концентрация в растворе). Жидкие кристаллы обладают одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой вязкие жидкости, состоящие из молекул вытянутой или дискообразной формы, определённым образом упорядоченных во всём объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.

История открытия жидких кристаллов[править | править код]

Жидкие кристаллы открыл в 1888 году австрийский ботаник Ф. Рейнитцер (нем.)русск.[2]. Он обратил внимание, что у кристаллов холестерилбензоата и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния — мутное и прозрачное. Само название «жидкие кристаллы» придумал Отто Леманн в 1904 году[3]. Однако учёные не обратили особого внимания на необычные свойства этих жидкостей.

Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям.

Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманом после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы» открытию не нашлось применения.

Фундаментальный вклад в физику жидких кристаллов внёс советский учёный В. К. Фредерикс[4].

Первое практическое применение жидких кристаллов произошло в 1936 году, когда компания Marconi Wireless Telegraph запатентовала свой электро-оптический световой клапан[5][6].

В 1963 г. американец Дж. Фергюсон (англ. James Fergason) использовал важнейшее свойство жидких кристаллов — изменять цвет под воздействием температуры — для обнаружения невидимых простым глазом неоднородно нагретых участков поверхности. После того, как ему выдали патент на изобретение (U.S. Patent 3 114 836), интерес к жидким кристаллам резко возрос.

В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации. Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек. И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея получила жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.

Группы жидких кристаллов[править | править код]

По своим общим свойствам ЖК можно разделить на две большие группы:

  1. термотропные ЖК, образующиеся в результате нагревания твёрдого вещества и существующие в определённом интервале температур и давлений.
  2. лиотропные ЖК, которые представляют собой двух- или более компонентные системы, образующиеся из стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по-гречески означает «с двух концов», филос — «любящий», «благорасположенный»). Примером амфифилов могут служить фосфолипиды.

Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион (где ~ 12-20) и положительный ион и др. Полярная группа стремится к тесному контакту с молекулами воды, тогда как неполярная группа (алифатическая цепь) избегает контакта с водой. Это явление типично для амфифилов.

Термотропные ЖК подразделяются на три больших класса:

Схематическое изображение нематического жидкого кристалла.

  1. Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может служить -(пара-метоксибензилиден)-пара-бутиланилин.

    Схематическое изображение жидкого кристалла в смектической фазе

  2. Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться относительно друг друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше, чем у нематиков, и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис (пара-бутиланилин).
  3. Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повёрнуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино)-циннамат.
Читайте также:  Какие оксиды обладают кислотными свойствами

Холестерики ярко окрашены, и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, к изменению окраски ЖК.

Во всех приведённых типах ЖК характерным является ориентация дипольных молекул в определённом направлении, которое определяется единичным вектором — называемым «директором».

В недавнее время открыты так называемые колончатые фазы, которые часто образуются дискообразными молекулами, расположенными слоями друг на друге в виде многослойных колонн, с параллельными оптическими осями. Часто их называют «жидкими нитями», вдоль которых молекулы обладают трансляционными степенями свободы. Этот класс соединений был предсказан академиком Л. Д. Ландау, а открыт лишь в 1977 Чандрасекаром. Схематично характер упорядоченности жидких кристаллов названных типов представлен на рисунке.

У ЖК необычные оптические свойства. Нематики и смектики — оптически одноосные кристаллы. Холестерики, вследствие периодического строения, сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества. Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.

На феноменологическом уровне деформации жидкого кристалла, как правило, описываются при помощи плотности свободной энергии Франка — Озеена.

Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости. Для некоторых веществ вследствие анизотропии свойств ЖК удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через ноль при температуре 146 °C, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.

Применение жидких кристаллов[править | править код]

Сегментный и точечный ЖК-дисплей.

Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.

С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука.

Но самая многообещающая область применения жидкокристаллических веществ — информационная техника[7]: от первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии по сравнению с телевизорами на электронно-лучевых трубках. В жидкокристаллических дисплеях используется переход Фредерикса, открытый ещё в 1927 году.

М. Г. Томилин предложил использовать жидкие кристаллы в двухступенчатых фотографических технологиях, для сохранения изображений, регистрация внешних воздействий при этом происходит в мезофазе, а хранение — в твердокристаллическом состоянии[8].

Жидкие кристаллы применяются в производстве «умного стекла», способного изменять коэффициент светопропускания[9].

Производство[править | править код]

Основным производителем жидких кристаллов является немецкая компания Mеrck. Она обеспечивает больше половины мирового спроса на составляющие ЖК-экранов. Она получила золотую медаль ежегодной премии Ассоциации разработчиков и производителей информационных дисплеев SID-2015 (Society for Information Displays) в номинации «Комплектующие для дисплеев» за разработку инновационной технологии производства жидких кристаллов UB-FFS[10].

Ссылки[править | править код]

  • [www.xumuk.ru/encyklopedia/1540.html Жидкие кристаллы в химической энциклопедии «XuMuK»]
  • Беседа о жидких кристаллах с доктором химических наук Алексеем Юрьевичем Бобровским в программе Наука 2.0

Примечания[править | править код]

  1. Шибаев. Необычные кристаллы или загадочные жидкости (неопр.) // Соросовский образовательный журнал. — 1996. — № 11. — С. 41.
  2. Reinitzer, Friedrich. Beiträge zur Kenntniss des Cholesterins (неопр.) // Monatshefte für Chemie (Wien). — 1888. — Т. 9, № 1. — С. 421—441. — doi:10.1007/BF01516710.
  3. Otto Lehmann. Flüssige Krystalle (Жидкие кристаллы) // Zeitschrift für Physikalische Chemie. — Leipzig, 1904.
  4. Репьёва А., Фредерикс В. К теории анизотропных жидкостей и некоторые новые наблюдения над ними // V съезд рус. физиков, Москва, 15—20 дек. 1926 г. — М: ГИЗ, 1926. — С. 16—17.
  5. ↑ Liquid Crystal Display (LCD) (англ.). History of computer. Дата обращения 25 марта 2019. Архивировано 3 апреля 2019 года.
  6. Barnett Levin; Nyman Levin. Патент № GB441274 (A) Заявитель Marconi wireless telegraph co. (англ.). https://www.epo.org/index.html. European patent office (13 January 1934). Дата обращения 12 мая 2019.
  7. Цветков В. А., Гребенкин М. Ф. Жидкие кристаллы в оптоэлектронике // Жидкие кристаллы / под ред. С. И. Жданова. — М.: Химия, 1979. — С. 160—215
  8. ↑ Томилин М. Г.// Фотографические технологии на основе жидких кристаллов. — Статья. — Научно-технический вестник НИУ ИТМО. — УДК 535:771.36.
  9. ↑ За умным стеклом — будущее, ОКНАМЕДИА (1 сентября 2015). Дата обращения 6 апреля 2019.
  10. ↑ Инновационная технология производства жидких кристаллов компании «Мерк» удостоена награды, Современная электроника (30 июля 2015). Дата обращения 6 апреля 2019.
Читайте также:  Какие основные свойства стали

Литература[править | править код]

На русском[править | править код]

  • Чандрасекар С. Жидкие кристаллы. — М.: Мир, 1980. — 344 с.
  • Пикин С. А. Структурные превращения в жидких кристаллах. — М.: Наука, 1981. — 336 с.
  • Пикин С. А., Блинов Л. М. Жидкие кристаллы / Под ред. Л. Г. Асламазова. — М.: Наука, 1982. — 208 с. — (Библиотечка «Квант». Вып. 20). — 150 000 экз.
  • Сонин А. С. Введение в физику жидких кристаллов. — М.: Наука, 1983. — 320 с.
  • Сонин А. С. Дорога длиною в век: Из истории открытия и исследования жидких кристаллов. — М.: Наука, 1988. — 224 с. — ISBN 5-02-000084-1.
  • Анисимов М. А. Критические явления в жидкостях и жидких кристаллах. — М.: Наука, 1987. — 272 с.
  • Ландау Л. Д., Лифшиц Е. М. Механика жидких кристаллов // Теория упругости. — М.: Наука, 2003. — С. 264.
  • Клеман М., Лаврентович О. Д. Основы физики частично упорядоченных сред. — М.: ФИЗМАТЛИТ, 2007. — 680 с.
  • Воронов В. К., Подоплелов А. В. Физика на переломе тысячелетий: конденсированное состояние. — М.: ЛКИ, 2012. — С. 336. — ISBN 978-5-382-01365-7.
  • Блинов Л. М. Жидкие кристаллы: Структура и свойства. — М.: Книжный дом «ЛИБРОКОМ», 2013. — 480 с.

На английском[править | править код]

  • de Gennes P. G., Prost J. The Physics of Liquid Crystals. 2nd Edition — Clarendon Press, Oxford, 1993
  • Blinov L. M., Chigrinov V. G. Electrooptic Effects in Liquid Crystal Materials. — Springer, 1994
  • Kats E. I., Lebedev V. V. Fluctuational Effects in the Dynamics of Liquid Crystals. — Springer, 1994

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Список проблемных доменов

Источник

Второго декабря старший научный сотрудник кафедры высокомолекулярных соединений химического факультета МГУ, доцент, доктор химических наук, лауреат премии президента Российской Федерации для молодых ученых за 2009 Алексей Бобровский в рамках проекта «Публичные лекции Полит.ру» прочитал в Политехническом музее лекцию о жидких кристаллах. Корреспондент «Ленты.Ру» взял у ученого интервью, в котором Бобровский еще раз коротко рассказал, что такое жидкие кристаллы, как их получают и исследуют и зачем они нужны.

Что такое жидкие кристаллы?

Это вещества, способные образовывать особую фазу, промежуточную между обычной — изотропной (разупорядоченной) — жидкой фазой и твердой кристаллической фазой. Можно сказать, что жидкие кристаллы представляют собой упорядоченные жидкости. Часто для жидкокристаллических фаз используют термин «мезофазы» («мезос» — промежуточный). В силу своей молекулярной упорядоченности они обладают огромным количеством интересных свойств, благодаря которым жидкие кристаллы используются в разнообразных технических устройствах. Более того, сейчас практически каждый человек пользуется ЖК-монитором, смотрит ЖК-телевизор, мониторы мобильного телефона работают на жидких кристаллах.

Какими свойствами обладают жидкие кристаллы? Чем они отличаются от «обычных» кристаллов или от жидкостей?

Самая интересная особенность жидких кристаллов — они обладают анизотропией свойств. Это означает, что поляризованный свет распространяется в жидкокристаллической фазе с разной скоростью в различных направлениях. Благодаря этой особенности жидкие кристаллы можно использовать в переключаемых системах — с одной стороны, они быстро реагируют на внешние поля, а с другой — их свойства отличаются в зависимости от того, в каком направлении приложено внешнее поле.

Переориентация молекул жидкого кристалла обычно происходит за миллисекунды, и при этом возникают колоссальные изменения оптических свойств жидкокристаллического слоя.

Какие вещества могут переходить в жидкокристаллическое состояние?

Вещество может переходить в состояние жидкого кристалла, если его молекулы имеют определенную структуру — чтобы проявлялась анизотропия свойств, они должны быть анизометричными. Грубо говоря, в ЖК-веществе молекулы должны быть палочко- или дискообразными. Это в простейшем случае. Существует, к примеру, класс так называемых «бананообразных» (banana-shaped) молекул, образующих интересные мезофазы.

Существуют ли вещества, которые при одних условиях являются, например, жидкостью, а при других переходят в жидкокристаллическое состояние?

Среди жидких кристаллов выделяют два типа — термотропные и лиотропные. Термотропные переходят в жидкокристаллическое состояние при определенной температуре, а при других температурах они могут быть либо кристаллическими, либо (при высоких температурах) — изотропными жидкостями. В случае лиотропных жидких кристаллов мезофаза возникает при добавлении к веществу растворителя.

Читайте также:  Какие общие свойства живого

Переход в состояние жидкого кристалла происходит при понижении температуры или при повышении?

При нагревании любое вещество чаще всего переходит в менее упорядоченное состояние, соответственно, жидкокристаллическое состояние менее упорядочено, чем кристаллическое, но более упорядочено, чем изотропная жидкость.

А при дальнейшем нагреве такое вещество может перейти в состояние жидкости?

Да, некоторые вещества могут перейти в состояние обычной разупорядоченной жидкости, а потом начинают испаряться. Если рассмотреть обобщенную диаграмму изменения состояния вещества при повышении температуры, то она будет такой: кристалл, жидкий кристалл, жидкость и пар.

Когда и как были впервые получены жидкие кристаллы?

Первый выделенный учеными жидкий кристалл был синтетическим веществом на основе природного холестерина. Это вещество называется холестерилбензоат — эфир бензойной кислоты и холестерина, и у него в 1888 году было обнаружено жидкокристаллическое состояние, хотя тогда еще исследователи не знали, что это именно оно.

В истории жидких кристаллов получилось так, что вещества, обладающие такими свойствами, были синтезированы раньше, чем ученые в этих свойствах разобрались. Уже потом химики и физики начали изучать свойства новых веществ, и выяснилось, что многие из них могут образовывать жидкие кристаллы. Но всерьез жидкими кристаллами ученые заинтересовались только в конце 1960-х, когда поняли, что их можно использовать в технике.

Как ученые получают жидкие кристаллы сейчас? Каким образом они угадывают — или предсказывают, что то или иное вещество будет обладать жидкокристаллическими свойствами?

Сейчас жидкие кристаллы получают путем стандартного органического синтеза. Ученые накопили очень много информации, на основании которой возможно предположить, будет ли вещество образовывать жидкокристаллическую фазу, или не будет.

Встречаются ли жидкие кристаллы в природе?

Жидкокристаллическое состояние играет важную роль в «работе» живых систем. Например, оно может наблюдаться в липидных мембранах. При некоторых условиях переходить в жидкокристаллическую фазу может ДНК. Иногда встречаются аналоги, или подобия ЖК-структур — например, переливающаяся окраска некоторых жуков и бабочек определяется твердыми структурами, которые напоминают «замороженные» жидкие кристаллы.

Как специалисты изучают жидкие кристаллы? Какие экспериментальные методы они используют?

Самый первый, так сказать традиционный, способ изучения жидких кристаллов — это поляризационно-оптическая микроскопия. Эта же технология применяется для исследования обычных кристаллов. Коротко суть метода такова: когда поляризованный свет попадает в жидкокристаллическую среду, наблюдается поворот плоскости поляризации, и степень поворота зависит от длины волны. Мезофазы дают характерные картинки, текстуры, при наблюдении в поляризационный микроскоп. Анализ изображения позволяет сделать первичный вывод о том, что за жидкокристаллическая фаза образуется.

Другой метод изучения жидких кристаллов — это рентгеноструктурный анализ.

Кроме того, для изучения свойств жидких кристаллов используют спектральные методы, включая, например, ядерно-магнитный резонанс. И хотя методов много, и изучают жидкие кристаллы уже давно, очень многие их свойства остаются пока непонятными.

А есть ли какие-то свойства, которых у жидких кристаллов пока не обнаружено, но наличие которых предполагается?

На ум ничего такого не приходит. В 70-е годы была предсказана возможность появления сегнетоэлектричества в некоторых типах ЖК-фаз, а позже его действительно обнаружили. Сейчас в исследовании жидких кристаллов есть несколько, так скажем, «модных» направлений. Например, к ним относятся исследования вышеупомянутых бананообразных молекул. Впервые ученые ими заинтересовались еще в середине 90-х годов, но сейчас интерес усилился, потому что такие жидкие кристаллы демонстрируют очень необычные физические свойства, включая, например, сегнетоэлектричество.

Давайте поговорим о практическом применении жидких кристаллов. Как именно они работают, скажем, в мониторах или часах?

Жидкие кристаллы могут легко переориентироваться во внешнем магнитном или электрическом поле. Их наносят в виде тонкой пленки на специальную зону с проводящим покрытием. При подаче электрического сигнала происходит переориентация молекул жидких кристаллов, и цвет или светопропускание покрытия изменяются.

Кстати, в жидкокристаллических дисплеях используют не один тип кристаллов, а многокомпонентную смесь (причем не обязательно, чтобы все ее составляющие обладали жидкокристаллическими свойствами). Это делается для того, чтобы понизить температуру плавления смеси до значения ниже комнатной температуры. Иначе такие дисплеи не смогут работать, так как жидкие кристаллы в них будут находиться в твердом состоянии.

Какие еще применения есть у жидких кристаллов?

Используя жидкие кристаллы, можно проводить визуализацию температурных полей — дело в том, что некоторые жидкие кристаллы меняют свою окраску под действием изменения температуры.

Но, вообще говоря, кульминация активности исследований жидких кристаллов для дисплейных технологий была в 80-х-90-х годах прошлого века, а сейчас интерес к ним с этой точки зрения во многом угас. Однако это не значит, что с ними уже все ясно. Есть огромный простор и для фундаментальных исследований, и для возможных «недисплейных» применений: в оптоэлектронике, создании сенсоров, в биологии и медицине.

Источник