Какими свойствами обладают твердые жидкие и газообразные вещества
Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.
Свойства и строение твердых тел
Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.
Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, средняя скорость движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.
Кристаллическое строение твердых тел
Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука — кристаллография.
Химическое строение твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.
Зонная теория строения твердого тела рассматривает твердое вещество как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.
Что такое структура жидкости?
Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы жидкого вещества свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.
Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.
Какова структура и строение газообразных тел?
Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.
Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.
Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.
Изменение состояния
Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.
- Плавление. Под воздействием очень высоких температур организованная структура разрушается, и твердое тело становится жидким. Частицы по-прежнему располагаются близко друг к другу, но между ними появляется больше свободного пространства. Таким образом, когда твердое вещество плавится, оно, как правило, расширяется, чтобы заполнить несколько больший объем. Эта свобода передвижения позволяет, например, придать определенную форму жидкому металлу.
- Испарение. Строение и свойства жидких тел позволяют им при определенных условиях переходить в совершенно другое физическое состояние. Например, случайно пролив бензин при заправке автомобиля, можно довольно быстро почувствовать его резкий запах. Как это происходит? Частицы двигаются по всей жидкости, в итоге определенная их часть достигает поверхности. Их направленное движение может вынести эти молекулы за пределы поверхности в пространство над жидкостью, но притяжение будет затягивать их обратно. С другой стороны, если частица движется очень быстро, она может оторваться от других на приличное расстояние. Таким образом, при увеличении скорости частиц, которое случается обычно при нагревании, происходит процесс испарения, то есть преобразования жидкости в газ.
Поведение тел в разных физических состояниях
Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.
Особенности внутренней структуры
Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.
Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.
Упрощенные модели
В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул.
Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.
Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические свойства вещества зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.
Большинство веществ могут существовать в трех состояниях: твердом, жидком и газообразном. Они называются агрегатными состояниями вещества. Переход из одного состояния в другое происходит при нагревании или охлаждении, а также при изменении давления. Например, если воду — жидкость — подогревать, она будет превращаться в пар — газ. Теория, объясняющая свойства твердого, жидкого и газообразного состояний, называется кинетической теорией. Она основывается на представлении о том, что все вещества состоят из движущихся частиц.
Кинетическая теория
В науке многие гипотезы пока не доказаны, но считаются истинными, так как объясняют наблюдаемые явления. Кинетическая теория объясняет свойства твердых, жидких и газообразных тел, исходя из энергии частиц, из которых они состоят. Частицы твёрдого тела обладают наименьшей энергией, связаны друг с другом силой притяжения и не могут освободиться. Они только колеблются около постоянного центра. При нагревании энергия частиц твёрдого тела увеличивается. Теперь они могут освободиться от притяжения соседей. При этом твёрдое тело плавиться и превращается в жидкость. У частиц газа энергии ещё больше. Они находятся на большом расстоянии друг от друга и целиком заполняют предоставленный им объём. Нагревание увеличивает энергию частиц и позволяет им двигаться быстрее, и тело переходит из одного состояния в другое.
Броуновское движение
Движение молекул жидкостей и газов называют броуновским движением. В 1927 году английский биолог Роберт Броун заметил, что помешенные в жидкость частицы пыльцы растении начинают беспорядочно двигаться. Зигзагообразные движения частиц пыльцы в воде легко увидеть под микроскопом. Однако объяснить, почему это происходит Броун не мог. В XX веке Альберт Эйнштейн, уроженец Германии, объяснил, что частицы, помешенные в жидкость или газ, движутся благодаря ударам также движущихся, но невидимых молекул.
Изменение состояния
Когда твердое тело нагревается, его температура повышается, а энергия частиц растет. Наконец наступаем точка плавления. В этот момент частицы обретают достаточно энергии, чтобы разорвать силы притяжения, и твердое тело плавится.
Дальнейшее нагревание приводит к тому, что жидкость достигает точки кипения, частицы ее окончательно освобождаются друг от друга, и жидкость превращается в газ. Пламя свечи нагревает воск, и он тает, но застывает вновь, стекая от пламени. Гейзеры выбрасывают на поверхность кипящую воду и пар, разогретые вулканическими процессами в земной коре. Когда вещество остывает, происходит обратный процесс. Когда температура газа падает до точки кипения, газ конденсируется и становится жидкостью. Охладившись до точки плавления, жидкость твердеет (замерзает) и превращается в твердое тело. Есть вещества, например углекислый газ, переходящие из твёрдого состояния в газообразное, минуя жидкое. Такое явление называется возгонкой. Когда вулканические процессы разогревают подземную воду до кипения, появляются гейзеры. Вода превращается в пар, давление возрастает, и кипящая вода и пар устремляются по трещинам вверх и вырываются на поверхность.
Разные вещества изменяют агрегатное состояние при разных температурах, поэтому они подразделяются на твердые, жидкие и газообразные в соответствии с их состоянием при комнатной температуре 20 градусов. Температура плавления или кипения вещества изменится, если добавить в него какие-либо примеси или изменить давление. Давление земной атмосферы мы называем атмосферным давлением. Обычное давление уровне моря называется давлением в одну атмосферу. На вершине горы Эверест (8848 метров над уровнем моря) давление меньше одной атмосферы, и чистая вода закипает там при 71 градусе, а не при 100 градусах, как на уровне моря. Чем выше мы поднимаемся, тем ниже атмосферное давление и тем легче частичкам жидкости разорвать свои связи, то есть тем ниже точка кипения. Ученые считают, что на Марсе воды нет потому, что атмосферное давление там ничтожно, поэтому вода там немедленно закипает и испаряется.
Поверхностное натяжение
Молекулы поверхностного слоя жидкости прочно связаны друге другом, что приводит к поверхностному натяжению. Упрощенно можно считать, что на поверхности жидкости существует своего рода «плёнка». Поверхностное натяжение стягивает молекулы вместе. Так образуются капли. Расстояния между молекулами поверхностного слоя больше, чем между молекулами в глубине жидкости, и от этого они ещё сильней притягиваются друг к другу. Сила поверхностного натяжения достаточно велика, чтобы удерживать на поверхности воды легкие объекты – пылинки и даже насекомых. Водомерки могут спокойно разгуливать по воде, так как их веса недостаточно, чтобы прорвать «плёнку» на её поверхности.
Испарение
Некоторые молекулы поверхностного слоя обладают большей энергией, чем другие, и отрываются от поверхности, т.е. испаряются. Жидкость испаряется постоянно, даже когда она не подогревается. При испарении температура жидкости падает, так как средняя энергия её молекул понижается. Когда человек потеет, выступившие на его коже капельки воды испаряются, и кожа охлаждается.
Газы
Газ — это вещество, не имеющее определенного объёма и формы. Согласно кинетической теории, энергии молекул газа достаточно, чтобы разорвать связывающие их силы, они разлетаются и заполняют весь предоставленный им объем. Этот процесс называем диффузией. Воздушный шарик надувается по мере того, как его наполняет газ. Через пятнадцать минут воздух и бром перемешаются, так как их молекулы распределяются по обеим банкам (см. рис.). Запахи (ароматы цветов) – это тоже газы, распространяющиеся в воздухе с помощью диффузии. Давление газа зависит от того, насколько интенсивно его молекулы ударяются о стенки сосуда. Если (при неизменной температуре) уменьшить объем газа, скажем, уменьшив объем сосуда, то его давление возрастет, поскольку молекулы газа будут чаще ударять по стенкам. Давление также возрастет, если в сосуд накачать новую порцию газа. При нагревании молекулы газа начинают двигаться быстрее и на большее расстояние, т.к. газ расширяется и становится менее плотным. Если нагреваемый газ не имеет возможности расширяться, его давление возрастает.
Объём, масса и плотность
Объем — это количество пространства, занятого жидкостью иди твердым телом. Его измеряют в кубических метрах. Объем прямоугольного тела равен произведению его длины, ширины и высоты. Для определения объема жидкости ее можно налить в измерительный цилиндр. Чтобы определить объём тела неправильной формы, нужно определить какой объём жидкости оно вытесняет.
Масса твердого, жидкого или газообразного тела показывает, сколько в нем содержится вещества. Масса измеряется в килограммах. Следует различать массу и вес – величину силы тяготения, действующую на тело. На одну чащу весов помещается взвешиваемое тело, на другую — тело известной массы (см. рис.). Плотность показывает, насколько «плотно упакованы» частицы, составляющие вещество. К примеру, молекулы металла расположены ближе друг к другу, чем молекулы пробки или бумаги. Следовательно, плотность металла выше. Плотность рассчитывается путем деления массы тела на его объем и измеряется в килограммах на кубический метр (кг/м3). Гидрометр — прибор для измерения плотности жидкости. В плотной жидкости он плавает вблизи поверхности, так как его вес может вытеснить лишь, небольшой объем жидкости.
Анонимный вопрос · 14 февраля 2018
1,2 K
Как объясняют давление газа на основе учения о движении молекул?
Люблю фантастику, вязание, начинающий садовод
Давление газа на стенки сосудов вызывается ударами молекул газа.
У газов нет ни формы ни постоянного объема. Они могут заполнить любой объем.
Количество молекул в каждом кубическом сантиметре увеличивается при сжатии (уменьшается при расширении) от этого число ударов о стенки сосуда увеличивается (уменьшается). Поэтому чем больший сосуд газ заполняет, тем меньше давление и наоборот.
Газ одинаково давит по всем направлениям, как пример -когда надуваешь воздушный шар, то он надувается равномерно.
Если газ находиться в маленьком объеме, то давление на стенки становится огромным, поэтому газ удобнее и безопаснее заключать в специальные прочные стальные баллоны.
Прочитать ещё 1 ответ
Какое самое плотное газообразное вещество в мире?
Химик. Пытаюсь сделать мир немножко лучше. · koa.su
Если считать все рассматриваемые газы идеальными, то плотность газа зависит только от величины молярной массы соединения (на самом деле плотность газов, состоящих из сложных молекул, значительно отличается от рассчитанной для идеальных газов).
Вкратце говоря, поиск самого тяжелого газа ограничивается лишь информацией о существовании соединений и знанием агрегатного состояния вещества при необходимых условиях.
Вот что пришло мне на ум (комн. т.):
WF6 — 396 г/моль,
IF7 — 259 г/моль,
Rn — 222 г/моль,
список можно продолжать.
Железо твёрдое, потому что в нём молекулы и атомы спрессованы ближе друг у другу или в чём причина?
Researcher, Institute of Physics, University of Tartu
Нужно сначала избежать путаницы — «твердое» может значить две вещи: 1) агрегатное состояние, как твердое-жидкое-газ, и 2) механическая характеристика — твердость, как алмаз твердый, а мел — мягкий. Эти вещи в принципе связаны, но связь сложна и неоднозначная, поэтому не будем о ней :). Вероятно, Вы имеете в виду второе, механическую твердость (хотя железо отнюдь не чемпион, а вполне себе средненький материал по твердости, скорее для него имеет смысл говорить о довольно высокой прочности и пластичности).
Вы правы в том, что чем ближе элементы (молекулы, атомы, ионы) решетки друг к другу, тем прочнее будет свзь между ними. Но ключевым параметром здесь является тип химической связи, поскольку расстояние между атомами (молекулами, ионами) в решетке во многом определяется именно типом связи. Для железа, как и для других металлов, характерен металлический тип связи, когда, ну скажем, ионы металла в узлах решетки, а вокруг них общее электронное облако (это не совсем точное описание, но сгодится). Это дает 1) пластичность, поскольку связь кулоновская, а значит ненаправленная + ослабевает не так быстро при изменении расстояния. То есть, при сдвиге ионов из позиций (при механическом воздействии) связи не рвутся сразу, а имеют некий «запас прочности», 2) прочность, поскольку кулоновское взаимодействие достаточно сильное. Вот металлы они такие и есть — пластичные и прочные. Степень прочности/пластичности/твердости будет определяться во многом симметрией решетки, параметрами электронного газа и т.д.
Это можно сравнить с атомными кристаллами (типа того же алмаза) с ковалентными связями между атомами в узлах решетки (твердость может быть и повыше, поскольку если расстояние между атомами короткие, то энергия связи может быть очень высока. Зато пластичности никакой — связь направленная, любое смещение атома ее рвет). Или с молекулярными кристаллами, где связь между молекулами в узлах решетки Ван-дер-ваальсова (прочность никакая, поскольку энергия связи маленькая, зато пластичность может быть неплохая, поскольку связь ненаправленная, вопрос только в том, чтобы механическое воздействие было не слишком сильное, поскольку независимо от пластичности предел прочности очень низкий). Решетки с одним и тем же типом химсвязи всегда будут иметь много общего, хотя и могут различаться между собой достаточно сильно по количественным критериям в зависимости от других параметров.