Какими свойствами обладают терморезисторы

Какими свойствами обладают терморезисторы thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июня 2019;
проверки требуют 11 правок.

Условно-графическое обозначение терморезистора

Терморези́стор (термистор, термосопротивление) — полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры[1].

Терморезистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году[2].

Терморезисторы изготавливаются из материалов с высоким температурным коэффициентом сопротивления (ТКС), который обычно на порядки выше, чем ТКС металлов и металлических сплавов.

Конструкция и разновидности терморезисторов[править | править код]

Термисторы с аксиальными выводами

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • номинального (при 25 °C) электрического сопротивления;
  • температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.

Температура рассчитывается по уравнению Стейнхарта — Харта:

где T — температура, К;
R — сопротивление, Ом;
A,B,C — константы термистора, определённые при градуировке в трёх температурных точках, отстоящих друг от друга не менее, чем на 10 °С.

Одним из существенных недостатков «бусинковых» термисторов, как температурных датчиков, является то, что они не взаимозаменяемы и требуют индивидуальной градуировки[3]. Не существует стандартов, регламентирующих их номинальную характеристику сопротивление — температура. «Дисковые» термисторы могут быть взаимозаменяемыми, однако при этом лучшая допускаемая погрешность не менее 0,05 °С в диапазоне от 0 до 70 °С. Типичный 10-килоомный термистор в диапазоне 0—100 °С имеет коэффициенты, близкие к следующим значениям:

;
;
.

Режим работы терморезисторов и их применение[править | править код]

Зависимость сопротивления терморезистора от температуры: 1 — ТКС < 0; 2 — ТКС > 0

Режим работы терморезисторов зависит от выбранной рабочей точки на вольт-амперной характеристике (или ВАХ) такого прибора. В свою очередь ВАХ зависит от приложенной к прибору температуры и конструктивных особенностей терморезистора.

Терморезисторы с рабочей точкой, выставленной на линейном участке ВАХ, используются для контроля за изменением температуры и компенсации параметров (электрическое напряжение или электрический ток) электрических цепей, возникших вследствие изменения температуры. Терморезисторы с рабочей точкой выставленной на нисходящем участке ВАХ (с «отрицательным сопротивлением») применяются в качестве пусковых реле, реле времени, в системах измерения и контроля мощности электромагнитного излучения на сверхвысоких частотах (или СВЧ), системах теплового контроля и пожарной сигнализации, в установках регулирования расхода жидких и сыпучих сред.

Наиболее широко используются среднетемпературные терморезисторы (с температурным ТКС от −2,4 до −8,4 %/К), работающие в широком диапазоне сопротивлений (от 1 до 106Ом).

Также существуют терморезисторы с небольшим положительным температурным коэффициентом сопротивления (или ТКС) (от 0,5 до 0,7 %/К) выполненные на основе кремния, сопротивление которых изменяется по закону близкому к линейному. Такие терморезисторы находят применение в системах охлаждения и температурной стабилизации режимов работы транзисторов в различных радиоэлектронных системах.

Так же терморезисторы с положительным ТКС применяются в качестве саморегулирующихся нагревательных элементов, сопротивление которых растет по мере роста собственной температуры (PTC нагреватель). Такой нагревательный элемент никогда не перегреется и будет выдавать примерно одинаковую тепловую мощность в широком диапазоне напряжений.

Читайте также:  Выяснить какими свойства обладает бинарное отношение

См. также[править | править код]

  • Термометр сопротивления
  • Резистор
  • Бареттер
  • Термопара
  • Термостат

Примечания[править | править код]

Литература[править | править код]

  • Шефтель И. Т. Терморезисторы.
  • Мэклин Э. Д. Терморезисторы.
  • Шашков А. Г. Терморезисторы и их применение.
  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы: Учебник для вузов. — 4-е перераб. и доп. изд. — М.: Высшая школа, 1987. — С. 401—407. — 479 с. — 50 000 экз.

Источник

Начинающие радиолюбители задаются вопросом – термистор: что это такое? В двух словах, термистор (терморезистор) – радиодеталь, являющаяся по своей сути разновидностью резистора, конструкция которого выстроена на полупроводниках. Его сопротивление зависит от температуры, о чем говорит корень слова “терм” . Изготавливаются они на основе смешанных оксидов металлов. Существуют терморезисторы, которые работают при как при отрицательных, так и при положительных.

Работающие при минусовых температурах термисторы наиболее распространены в радиотехнике. Те, которые эксплуатируются в высоких температурах, применяются в ограниченном режиме. Они применяются в устройствах с жесткой системой контроля и сигнализацией. Формы термисторов бывают самые разнообразные, к тому же эти резисторы имеют очень миниатюрные размеры. Благодаря этому они нашли свое применение даже в медицине – они измеряют температуру внутри кровеносных сосудов.

В статье подробны рассмотрены подробно строение, особенности, сфера применения термисторов. Также в конце статьи приложен файл с детальной информацией по данной теме и видеоролик.

Что такое термистор

Фото термистора.

Как работает

термистор Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен. С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества. В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Термистор, это резистор с большим значением температурного коэффициента сопротивления (ТКС). При изменении температуры токопроводящего материала термистора его электрическое сопротивление значительно изменяется. Термисторы могут быть как с положительным, так и с отрицательным ТКС. Термисторы с положительным ТКС называются PTC-термисторы или позисторы, с отрицательным – NTC-термисторы. При нагреве PTC-термистора (позистора) его сопротивление увеличивается. При нагреве NTC-термистора его сопротивление уменьшается.

Основные параметры и характеристики терморезисторов с отрицательным ТКС

Основные параметры и характеристики терморезисторов с отрицательным ТКС.

Сопротивление позистора соответствует номинальному Rн, указанному в справочной документации обычно при температуре 25 гр. Цельсия, реже при 20. В начале нагрева PTC-термистора его сопротивление будет незначительно уменьшаться до некоторого минимального значения Rмин. При дальнейшем нагреве до некоторой температуры Tref сопротивление позистора станет незначительно увеличиваться.

Дальнейший нагрев на участке температур от Tref до максимально допустимого значения влечёт стремительное увеличение сопротивления. При этом разница сопротивлений может достигать нескольких порядков.

Материал в тему: устройство подстроечного резистора.

Зависимость сопротивления и температуры

Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой

R(T) = A exp(b/T)

где A, b – постоянные, зависящие от свойств материала и геометрических размеров.

Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта

1/T = a+b(lnR)+c(lnR)3

где T – температура в К;

R – сопротивление в Ом;

a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.

Стеклянный термистор

Стеклянный термистор.

Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:

  • a = 1,03 10-3
  • b = 2,93 10-4
  • c = 1,57 10-7

терморезистор Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.

Читайте также:  Какие свойства льда проявляются при разрушении горных пород

Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.

В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:

1/T = a+b(lnR)+c(lnR)2 + d(lnR)3

Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.

Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток. При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК).

Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:

  1. Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
  2. Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).

Терморезисторы часто разделят по диапазонам рабочих температур:

  • Низкотемпературные (ниже 170 К);
  • Среднетемпературные (170-510 К);
  • Высокотемпературные (свыше 510 К).

Обозначение термистора указано на рисунке ниже.

устройство термистора

Устройство термистора.

Главные параметры

термисторы При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме). Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.

Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия. ТКС (в % на один градус Цельсия).

Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.

Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне). Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.

Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус. Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

Конструкция и материалы

Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.

Читайте также:  Какие свойства известняка позволяют использовать для строительства

Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.

Устройство терморезистора

Устройство терморезистора.

При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.

Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.

Стабильность

Причины нестабильности термисторов следующие:

  • напряжения, возникающие в материале при термоциклировании и образование микротрещин;
  • структурные изменения в полупроводнике;
  • внешнее загрязнение (водой и др. веществами) и в результате химические реакции в порах и на поверхности полупроводника;
  • нарушение адгезии металлической пленки;
  • миграция примесей из металлических контактов в материал термистора.

термистор на схеме Для получения стабильного состояния термисторы подвергают старению (до 500-700 дней). Как правило, во время старения наблюдается рост сопротивления. При длительном использовании термисторов, они уходят за пределы допуска, в большинстве случаев, термисторный термометр показывает температуру несколько ниже, чем значение, определенное по номинальной характеристике. Исследования показывают, что бусинковые термисторы могут проявлять очень высокую стабильность (дрейф до 3 мК за 100 дней при 60 С).

Дисковые термисторы менее стабильны (дрейф до 50 мК за 100 дней при 60 С).  Термисторы представляют особый интерес для измерения низких температур благодаря своей относительной нечувствительности к магнитным полям. Некоторые типы термисторов могут применяться до температуры минус 100 С. Диапазон наилучшей стабильности термисторов – от 0 до 100 С. Основными преимуществами термисторов являются вибропрочность, малый размер, малая инерционность и невысокая цена.

Материал по теме: Как проверить варистор мультиметром.

Где используются

типы термисторов Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима. Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов. При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Ваши впечатления от статьи

Терморезистор — полупроводниковый элемент, который в зависимости от вида меняет сопротивление при росте/снижении температуры. Сегодня выделяется два вида изделий: Термисторы — детали с негативным температурным коэффициентом (NTC). Их особенность состоит в падении сопротивления при росте температуры.

Позисторы — элементы, имеющие «плюсовой» температурный коэффициент (PTC). В отличие от прошлого вида, при повышении T сопротивление, наоборот, растет. В зависимости от типа полупроводника при его производстве применяются разные элементы. Как отмечалось, при создании резистивных элементов используются оксиды, халькогениды и галогениды различных металлов, а конструктивное исполнение может меняться в зависимости от сферы назначения.

Более подробно о работе термисторов можно узнать, прочитав статью что такое термистор.  Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.radioradar.net

www.volt-info.ru

www.elektrikexpert.ru

www.temperatures.ru

www.remotvet.ru

Предыдущая

РезисторыЧто такое фоторезистор?

Следующая

РезисторыКак прочитать обозначение (маркировку) резисторов

Источник